
2/25/2019

1

Software Testing
Unit Testing

CSCI 3300/5300

Software Testing Pyramid

Exploratory

User Acceptance

System

Integration

Unit



2/25/2019

2

Unit Tests

• Simplest form of test
• Focuses on each 'unit' (class, file, function) individually
• Tests the behavior of each unit as per that unit's specification

• Need to know expected output of each function

• What if a class is complicated and is tightly coupled with other 
classes?

Example: how would you unit test this?
class InputThread
{

public InputThread(Timer timer, Buffer buffer){//initialize variables}
public void placeMessages()
{

while (numIntervals < SOME_VALUE)
{

timer.wait(interval);
int numMessages = dataInterface.getRate();
buffer.placeMessages(numMessages, timer.timeNow());

}
}

}



2/25/2019

3

Possible Strategies

Advantages of Unit Testing

• Forces a simpler design
• Finds errors at the source
• Finding errors closer to the time when they were made saves time in 

the long term



2/25/2019

4

Constructing Unit Tests: Equivalence Class 
Partitioning

• Inputs to the system are divided into groups that are expected to 
exhibit similar behavior

• Select one input from each group to test the behavior
• Consider valid and invalid classes
• Example: https://www.guru99.com/equivalence-partitioning-

boundary-value-analysis.html#2 
• What are the equivalence classes for the triangle testing challenge 

from last time?

Constructing Unit Tests: Boundary Value Analysis

• Testing between extreme ends or boundaries between partitions of the 
input values:

• Start-End
• Lower-Upper
• Minimum-Maximum

• For each equivalence class, select a value at
• Minimum
• Just above the minimum
• A nominal value
• Just below the maximum
• Maximum

• What are the boundary values for the triangle testing challenge?



2/25/2019

5

Run unit tests with each build

• Frameworks can help automate unit tests:
• gtest – Google test framework for C++
• unittes – python unit test framework
• JUnit – Java unit test framework

• Example from my repo

Isolating issues and Adding Unit tests

• Bugs may be discovered at any time (not just during unit testing)
• Try to isolate the issue in a unit test environment
• Build a test that replicates the issue

• Will help you debug the problem
• Will add to regression testing

• Fix the problem and rerun unit test
• Example: clock test


