
11/8/2018

1

S.O.L.I.D Design Principles
CSCI 2300

S.O.L.I.D Decoded

• S – Single Responsibility Principle
• O – Open/Closed Principle
• L – Liskov Substitution Principle
• I – Interface Segregation Principle
• D – Dependency Inversion Principle

11/8/2018

2

Single Responsibility
Principle (SRP)
• Each class has one responsibility

(and one reason to change)

SRP Violated (from Tic Tac Toe)

class Board{
public void reset(){…}

public boolean setPiece(…){…}

public boolean hasWinner(…){…}

public boolean hasOpenPosition(){…}

public void display(){…}

}
Board is responsible

for too much

11/8/2018

3

How can we fix it:

• Separate responsibilities into multiple classes:
• Board
• BoardView (or BoardDisplay)

• Use interfaces:
• IBoard – interface for board
• IBoardDisplay – interface for displaying a board

• Use composition:
• Board – the model of the board
• BoardDisplay has an instance of Board

class Person {
protected String firstName; //get and set methods
protected String lastName; //get and set methods
protected Gender gender; //get and set methods
protected DateTime dateOfBirth;
public string Format(string formatType) {

switch(formatType) {
case “XML":

return xmlFormattedString; break;
case "FirstAndLastName":

return firstAndLastNameString; break;
default:

// implementation of default formatting
return defaultFormattedString;

}
}

}

A. This class violates SRP
because it encapsulates
multiple attributes of a
person

B. This class violates SRP
because it does not have a
constructor

C. This class violates SRP
because it is responsible for
encapsulating “person”
attributes and formatting
them

D. This class does not violate
SRP

11/8/2018

4

Open/Closed
Principle (OCP)
• Classes/methods/modules should be open

for extension but closed for modification

• Create classes/methods/modules that whose
behavior can change without recompiling the
code

• If we can extend software to satisfy new
requirements, without modifying existing
code, the design satisfies OCP

• Simple example: pass parameters to methods
instead of hard coding values.

A. This design violates OCP because it has drawShape() method and shape is abstract
B. This design violates OCP because we’ll need to change Graphic Editor if we add another shape.
C. This design does not violate OCP because if we add another shape, we don’t have to change

GraphicEditor: we can create a sub-class of GraphicEditor and add the necessary draw function
there.

D. None of the above are true

11/8/2018

5

Improved Design

Liskov Substitution
Principle (LSP)
• Subtypes can be substituted for

their base types
• Subclass IS-SUBSTITUTABLE-FOR

base class

11/8/2018

6

Violation of LSP

• Class “Rectangle”
• Class “Square” extends “Rectangle”
• “Square” enforces that height and width are equal
• Suppose the following code:

public double area(Rectangle r)
{

r.setHeight(10);
r.setWidth(5);
return r.getArea();

}

A. This code violates LSP because we are checking the sub-type of Bill
to determine the logic
B. This code violates LSP because the calculation should be done in the
Bill class
C. This code violates LSP because LargeGroupBill is not defined
D. This code does not violate LSP

public double calculate (Bill bill)
{

if (bill instanceOf LargeGroupBill)
{

// add up the bill items and add 15% gratuity

}
else{

// add up the bill items

}
}

11/8/2018

7

public class Vehicle{
public void drive(int miles){

if (miles > 0 && miles < 300){…}
}

}
public class Scooter extends Vehicle{

public void drive(int miles){
if (miles > 0 && miles < 50){

super.drive(miles);
}

}
}

A. This code does not violate LSP.
B. This code violates LSP because it restricts the

behavior of Vehicle.
C. This code violates LSP because the drive() method

of Scooter calls parent’s drive() method.

class ToyCar extends Vehicle{

public void drive(int miles) {
// Show flashy lights, make random sounds

}

public void fillUpWithFuel() {

// silly lights and noises

public int fuelRemaining { return 0;}

}

A. This code does not violate LSP
B. This code violates LSP because it completely changes the

behavior of drive() and fillUpWithFuel()
C. This code violates LSP because fuelRemaining() returns 0
D. B and C.

11/8/2018

8

Interface Segregation
Principle (ISP)
• Clients should not be forced to

depend on methods they do not
use

• Clients should not implement
methods if those methods are
unused.

ISP Violation

public interface IMembership

{

boolean Login(string username, string password);

void Logout(string username);

Guid Register(string username, string

password, string email);

void ForgotPassword(string username);

}

11/8/2018

9

Improved Design

public interface ILogin
{
boolean Login(String username, String password);
void Logout(String username);

}

public interface IMembership extends ILogin
{
Guid Register(String username, String password,

String email);
void ForgotPassword(string username);

}

public interface Movable{
public void move();
public void setSpeed(int speed);

}

public class Picture implements Movable{

public void move(){// code for moving a
picture across the screen}

public void setSpeed(int speed){return;}

}
A. This code violates ISP because Picture class has a “dummy” implementation of

setSpeed()
B. This code violates ISP because Movable interface has more than one method
C. This code violates ISP because we should be able to control the speed at which

Picture moves across the screen
D. This code does not violate ISP

11/8/2018

10

Dependency Inversion
Principle (DIP)

• High level modules should not
depend on low level modules

• Both should depend on
abstraction

• Abstractions should not depend
on details

• Details should depend upon
abstraction

Dependency Inversion Principle Example

• There is a tight coupling
between classes

• Dependency on low level
modules

• If we add another device,
we’ll need to adjust existing
code and add another
dependency to Projector

11/8/2018

11

Suppose we have the following objects:
Projector projector
SlimLaptop slimLaptop
LargeLaptop largeLaptop
MicroUSBtoHDMIAdapter adapter

What operation(s) is/are possible?
A. projector.plug(slimLaptop)
B. projector.plug(largeLaptop)
C. projector.plug(adapter)
D. B and C
E. All of the above

Added a new device: Old Laptop

11/8/2018

12

Consider the redesigned interfaces from the
handout. What changes are needed to get the
following code to work (assuming projector
and oldLaptop have been instantiated).
projector.plug(oldLaptop)

A. OldLaptop implements HDMIPort
B. OldLaptop implements VGAPort
C. OldLaptop implements HDMIPlug
D. OldLaptop implements VGAPlug
E. Projector implements OldLaptop

