
CSCI 3100, Fall 2018

Homework 6 [100 points]

Overview
This homework focuses on the Shortest Path algorithms. We talked about three 'single source' shortest

path algorithms: brute force (check all possible paths and pick the shortest one), Bellman-Ford, and

Dijkstra's algorithms. I coded up one of these algorithms and created a shared library called

shortest_path. Your task is to determine, which algorithm I coded up.

Since we know that Dijkstra's algorithm only works on non-negative edge weights, I constrained my

shortest_path library to only work on graphs with non-negative edge weights. That way, you can't

use 'edge weights' as the differentiating factor. This leaves you with using 'run time' to determine which

algorithm is contained in the shortest_path library.

In your 'git' repositories, you will find a directory named 'runShortestPath'. This directory has the

following structure and files:

 build/

 include/

 lib/

 CMakeLists.txt

 GraphGenerator.cpp

 RunShortestPath.cpp

The 'lib' directory contains libshortest_path.so, a C++ library with the shortest path

algorithm.

The 'include' directory contains the following header files that you will need:

 Edge.h

 Graph.h

 ShortestPath.h

Using these files along with libshortest_path.so, you will be able to construct various graphs

and run shortest path algorithms on them.

As an example of how to use Graph.h and ShortestPath.h, I added RunShortestPath.cpp

file. It uses a graph generator that I wrote (GraphGenerator.h/GraphGenerator.cpp). You are

welcome to use that code if you wish. However, if you wish to make your own graph generator, it is up

to you.

Finally, CMakeLists.txt file is a file used by 'cmake' to generate makefiles. Again, you are

welcome to use it or you can create your own Makefile. Here is how you would use

CMakeLists.txt:

cd build

cmake ..

make

This will generate an executable called run_shortest_path in the 'bin' subdirectory of

runShortestPath directory.

To determine which algorithm I coded up, you will need to run this algorithm on graphs of various sizes

(varying in the number of vertices and edges), time how long it takes to run it and make an educated

guess based on the run-time complexity you observed for the input sizes you provided.

Your Submission
Submit a report with your analysis on this problem and your conclusion about which algorithm is

contained in the shortest_path library.

Overview – brief overview of what the report is about.

Approach – describe how you determined which algorithm it is. Include relevant data: graph sizes

(number of vertices and edges) and how long it took for the algorithm to find the shortest path. Include

any relevant plots you created for this data.

Conclusion – state your conclusion based on the data you observed.

Submit a typed-up report via email or in class.

