Greedy Algorithms

CSCI 3100

Overview

Like dynamic programming, used to solve optimization problems.

Problems exhibit optimal substructure (like DP).

Problems also exhibit the greedy-choice property.

- When we have a choice to make, make the one that looks best right now.
- Make a locally optimal choice in hope of getting a globally optimal solution.

<section-header>

Optimal Substructure

Assume activities are sorted by finishing times.

 $\circ f_1 \!\leq\! f_2 \!\leq \ldots \leq\! f_{\mathsf{n}}.$

Suppose an optimal solution includes activity a_k .

- This generates two subproblems.
- Selecting from a₁, ..., a_{k-1}, activities compatible with one another, and that finish before a_k starts (compatible with a_k).
- Selecting from $a_{k+1}, ..., a_{n}$, activities compatible with one another, and that start after a_k finishes.
- The solutions to the two subproblems must be optimal.
 Prove using the cut-and-paste approach.

Recursive Solution

Let S_{ij} = subset of activities in *S* that start after a_i finishes and finish before a_j starts.

Subproblems: Selecting maximum number of mutually compatible activities from S_{ii} .

Let c[i, j] = size of maximum-size subset of mutually compatible activities in S_{ii} .

Recursive
Solution:
$$c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \phi \\ \max \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \phi \end{cases}$$

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

I = { }

While (T is not empty) Select a task t from T by a rule A Add t to I Remove t and all tasks incompatible with t from T

Greedy Choices

- Schedule a task with earliest starting time
- Schedule a task with fewest conflicts
- Schedule a task with shortest duration
- Schedule a task with earliest finish time

Earliest finish time greedy property Solution based on earliest finish time is optimal • There is an optimal solution to the subproblem S_{ii}, that includes the activity with the smallest finish time in set S_{ii}. · Can be proved easily. am - activity with earliest finish time Given set S of activities, let A C S be the optimal solution. Prove that amEA Proof: Let akEA be an activity with earliest finish time in A. Casel: am = ako Case : am = uk case : am ≠ ak. Construct A' = A-Eak} V Eanz. A' is a set of compatible tasks because am finisher Sefore at [A']= |A| R

Exploiting the greedy property

Hence, there is an optimal solution to S that includes a_1 .

Therefore, make this greedy choice without solving subproblems first and evaluating them.

Solve the subproblem that ensues as a result of making this greedy choice.

Combine the greedy choice and the solution to the subproblem.

Elements of Greedy Algorithms

Greedy-choice Property.

• A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

Optimal Substructure.