
9/24/2018

1

Greedy Algorithms
CSCI 3100

Overview
Like dynamic programming, used to solve optimization problems.

Problems exhibit optimal substructure (like DP).

Problems also exhibit the greedy-choice property.
◦ When we have a choice to make, make the one that looks best right now.
◦ Make a locally optimal choice in hope of getting a globally optimal solution.

9/24/2018

2

Greedy Strategy
The choice that seems best at the moment is the one we go with.

◦ Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore,
it’s always safe to make the greedy choice.

◦ Show that all but one of the subproblems resulting from the greedy choice are empty.

Activity-selection Problem
Input: Set S of n activities, a1, a2, …, an.

◦ si = start time of activity i.
◦ fi = finish time of activity i.

Output: Subset A of maximum number of compatible activities.
◦ Two activities are compatible, if their intervals don’t overlap.

Example: Activities in each line
are compatible.

9/24/2018

3

Optimal Substructure
Assume activities are sorted by finishing times.

◦ f1  f2  …  fn.

Suppose an optimal solution includes activity ak.
◦ This generates two subproblems.
◦ Selecting from a1, …, ak-1, activities compatible with one another, and that finish before ak

starts (compatible with ak).
◦ Selecting from ak+1, …, an, activities compatible with one another, and that start after ak

finishes.
◦ The solutions to the two subproblems must be optimal.

◦ Prove using the cut-and-paste approach.

Recursive Solution
Let Sij = subset of activities in S that start after ai finishes and finish before aj
starts.

Subproblems: Selecting maximum number of mutually compatible activities
from Sij.

Let c[i, j] = size of maximum-size subset of mutually compatible activities in Sij.
















ij
jki

ij

Sjkckic

S
jic if}1],[],[max{

 if0
],[

Recursive
Solution:

9/24/2018

4

Greedy Algorithm for Scheduling
Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the
greedy algorithm

I = { }

While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T

Greedy Choices
 Schedule a task with earliest starting time

 Schedule a task with fewest conflicts

 Schedule a task with shortest duration

 Schedule a task with earliest finish time

9/24/2018

5

Earliest finish time greedy property
Solution based on earliest finish time is optimal

◦ There is an optimal solution to the subproblem Sij, that includes the activity with the smallest finish time
in set Sij.

◦ Can be proved easily.

Exploiting the greedy property
Hence, there is an optimal solution to S that includes a1.

Therefore, make this greedy choice without solving subproblems first and evaluating them.

Solve the subproblem that ensues as a result of making this greedy choice.

Combine the greedy choice and the solution to the subproblem.

9/24/2018

6

Recursive Algorithm
Recursive-Activity-Selector (s, f, i, j)

1. m  i+1

2. while m < j and sm < fi

3. do m  m+1

4. if m < j

5. then return {am} 

6. Recursive-Activity-Selector(s, f, m, j)

6. else return 

Initial Call: Recursive-Activity-Selector (s, f, 0, n+1) Complexity:

Straightforward to convert the
algorithm to an iterative one.
See the text.

Typical Steps
Cast the optimization problem as one in which we make a choice and are left with one
subproblem to solve.

Prove that there’s always an optimal solution that makes the greedy choice, so that the greedy
choice is always safe.

Show that greedy choice and optimal solution to subproblem  optimal solution to the
problem.

Make the greedy choice and solve top-down.

May have to preprocess input to put it into greedy order.
◦ Example: Sorting activities by finish time.

9/24/2018

7

Elements of Greedy Algorithms
Greedy-choice Property.

◦ A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

Optimal Substructure.

