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Graphs

Graph G = (V, E)
◦ V = set of vertices
◦ E = set of edges  (VV)

Types of graphs
◦ Undirected: edge (u, v) = (v, u); for all v, (v, 

v)  E (No self loops.)
◦ Directed: (u, v) is edge from u to v, 

denoted as u  v. Self loops are allowed.
◦ Weighted: each edge has an associated 

weight, given by a weight function 
w : E  R.

◦ Dense: |E|  |V|2.
◦ Sparse: |E| << |V|2.

|E| = O(|V|2)



Graphs
If (u, v)  E, then vertex v is adjacent to vertex u.
Adjacency relationship is:
◦ Symmetric if G is undirected.
◦ Not necessarily so if G is directed.

If G is connected:
◦ There is a path between every pair of vertices.
◦ |E|  |V| – 1.
◦ Furthermore, if |E| = |V| – 1, then G is a tree.

Other definitions in Appendix B (B.4 and B.5) as 
needed.

Representation of Graphs
Two standard ways.

◦ Adjacency Lists.

◦ Adjacency Matrix.
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Consists of an array Adj of |V| lists.
One list per vertex.
For u  V, Adj[u] consists of all vertices adjacent to u.

Adjacency Lists
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If weighted, store weights also in adjacency 
lists.

Storage Requirement
For directed graphs:
◦ Sum of lengths of all adj. lists is

out-degree(v) = |E|
vV

◦ Total storage: (V+E)

For undirected graphs:
◦ Sum of lengths of all adj. lists is

degree(v) = 2|E|
vV

◦ Total storage: (V+E)

No. of edges leaving v

No. of edges incident on v. Edge (u,v) is incident 
on vertices u and v.



Pros and Cons: adjacency list 
Pros
◦ Space-efficient, when a graph is sparse.
◦ Can be modified to support many graph variants.

Cons
◦ Determining if an edge (u,v) G is not efficient.

◦ Have to search in u’s adjacency list. Time complexity:____________
◦ Worst case time complexity to search u’s adjacency list: _________

Adjacency Matrix
|V|  |V| matrix A.
Number vertices from 1 to |V| 
in some arbitrary manner.
A is then given by:
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2  0   0   1   0
3  0   0   0   1
4  0   0   0   0
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A = AT for undirected graphs.



Space and Time
Space: ( ).
◦ Not memory efficient for large graphs.

Time: to list all vertices adjacent to u: (  ).

Time: to determine if (u, v)  E: ( ).

Can store weights instead of bits for weighted 
graph.

Exercise
Draw adjacency list and adjacency matrix for the following graph:
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Graph-searching Algorithms
Searching a graph:
◦ Systematically follow the edges of a graph 

to visit the vertices of the graph.

Used to discover the structure of a graph.

Standard graph-searching algorithms.
◦ Breadth-first Search (BFS).
◦ Depth-first Search (DFS).

Breadth-first Search
Input: Graph G = (V, E), either directed or undirected, 
and source vertex s  V.

Output:
◦ d[v] = distance (smallest # of edges, or shortest path) from s to v, for all v  V. 

d[v] =  if v is not reachable from s.
◦ [v] = u such that (u, v) is last edge on shortest path s         v.

◦ u is v’s predecessor.
◦ Builds breadth-first tree with root s that contains all reachable vertices.

Definitions:
Path between vertices u and v: Sequence of vertices (v1, v2, …, vk) such that 
u=v1 and v =vk, and (vi,vi+1)  E, for all 1 i  k-1.
Length of the path: Number of  edges in the path.
Path is simple if no vertex is repeated.



Breadth-first Search
Expands the frontier between discovered and undiscovered 
vertices uniformly across the breadth of the frontier.
◦ A vertex is “discovered” the first time it is encountered during the 

search.
◦ A vertex is “finished” if all vertices adjacent to it have been 

discovered.

Colors the vertices to keep track of progress.
◦ White – Undiscovered.
◦ Gray – Discovered but not finished.
◦ Black – Finished.

◦ Colors are required only to reason about the algorithm. Can be implemented 
without colors.

BFS for Shortest Paths
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white: undiscovered
gray: discovered
black: finished

Q: a queue of discovered 
vertices
v.color: color of v
v.d: distance from s to v
v.: predecessor of v

Example (BFS)
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Example (BFS)
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Example (BFS)
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Example (BFS)
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Example (BFS)
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree

Analysis of BFS
Initialization takes O(V).
Traversal Loop

◦ After initialization, each vertex is 
enqueued and dequeued at most 
once, and each operation takes O(1).
So, total time for queuing is O(V).

◦ The adjacency list of each vertex is 
scanned at most once.  The sum of 
lengths of all adjacency lists is (E).

Summing up over all vertices => total 
running time of BFS is O(V+E), linear in 
the size of the adjacency list 
representation of graph. 



Breadth-first 
Tree

For a graph G = (V, E) with source s, the 
predecessor subgraph of G is 
G = (V , E) where 
◦ V={vV : [v]  NIL}{s}
◦ E={([v],v)E : v  V - {s}} 

The predecessor subgraph G is a 
breadth-first tree if:
◦ V consists of the vertices reachable from s

and
◦ for all vV , there is a unique simple path 

from s to v in G that is also a shortest path 
from s to v in G.  

The edges in E are called tree edges.  
|E | = |V | - 1.

Exercise
Use BFS algorithm to determine the breadth-first tree of the following 
graph starting with node A:
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Shortest Path
Breadth First Search computes the shortest path between two nodes of 
a graph

Proof is in Ch 22.2 – READ IT 

Depth-first 
Search (DFS)

Explore edges out of the most 
recently discovered vertex v.

When all edges of v have been 
explored, backtrack to explore other 
edges leaving the vertex from which v
was discovered (its predecessor).

“Search as deep as possible first.”

Continue until all vertices reachable 
from the original source are 
discovered.

If any undiscovered vertices remain, 
then one of them is chosen as a new 
source and search is repeated from 
that source.



Depth-first Search
Input: G = (V, E), directed or undirected. No source vertex 
given!

Output:
◦ 2 timestamps on each vertex. Integers between 1 and 2|V|.

◦ d[v] = discovery time (v turns from white to gray)
◦ f [v] = finishing time (v turns from gray to black)

◦ [v] : predecessor of v = u, such that v was discovered during the 
scan of u’s adjacency list.

Uses the same coloring scheme for vertices as BFS.

Pseudo-code



Example (DFS)
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Example (DFS)
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1/

4/ 3/

2/

u v w

x y z

Example (DFS)

1/

4/5 3/

2/

u v w

x y z



Example (DFS)
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Example (DFS)
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Example (DFS)
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Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z



Example (DFS)
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Analysis of DFS
Loops on lines 1-2 & 5-7 take 
(V) time, excluding time to 
execute DFS-Visit.

DFS-Visit is called once for each 
white vertex vV when it’s 
painted gray the first time.  
Lines 4-7 of DFS-Visit is 
executed |Adj[v]| times. The 
total cost of executing DFS-Visit 
is vV|Adj[v]| = (E)

Total running time of DFS is
(V+E).

Parenthesis TheoremTheorem 22.7Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u 
nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 So d[u] < d[v] < f [u] < f [v] cannot happen.

 Like parentheses:
 OK: ( ) [ ] ( [ ] ) [ ( ) ]

 Not OK: ( [ ) ] [ ( ] )

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].



Example (Parenthesis 
Theorem)
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Depth-First Trees
Predecessor subgraph defined slightly different from that 
of BFS.
The predecessor subgraph of DFS is G = (V, E) where E
={([v],v) : v  V and [v]  NIL}.
◦ How does it differ from that of BFS?
◦ The predecessor subgraph G forms a depth-first forest

composed of several depth-first trees.  The edges in E are called 
tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.



Exercise
Apply DFS algorithm to the following graph and draw the depth first 
forest.
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White-path Theorem
, which was 

Theorem 22.9

v is a descendant of u if and only if at time d[u], there  is  a    path 
from u to v consisting of only white vertices. (Except for u, which was 
just colored gray.)



Classification of Edges
Tree edge: in the depth-first forest. Found by exploring (u, v).

Back edge: (u, v), where u is a descendant of v (in the depth-first 
tree).

Forward edge: (u, v), where v is a descendant of u, but not a tree 
edge.

Cross edge: any other edge. Can go between vertices in same depth-
first tree or in different depth-first trees.

Theorem:
In DFS of an undirected graph, we get only tree and back edges. No forward or cross 
edges.


