
Elementary Graph
Algorithms
CSCI 3100

Graphs

Graph G = (V, E)
◦ V = set of vertices
◦ E = set of edges (VV)

Types of graphs
◦ Undirected: edge (u, v) = (v, u); for all v, (v,

v) E (No self loops.)
◦ Directed: (u, v) is edge from u to v,

denoted as u v. Self loops are allowed.
◦ Weighted: each edge has an associated

weight, given by a weight function
w : E R.

◦ Dense: |E| |V|2.
◦ Sparse: |E| << |V|2.

|E| = O(|V|2)

Graphs
If (u, v) E, then vertex v is adjacent to vertex u.
Adjacency relationship is:
◦ Symmetric if G is undirected.
◦ Not necessarily so if G is directed.

If G is connected:
◦ There is a path between every pair of vertices.
◦ |E| |V| – 1.
◦ Furthermore, if |E| = |V| – 1, then G is a tree.

Other definitions in Appendix B (B.4 and B.5) as
needed.

Representation of Graphs
Two standard ways.

◦ Adjacency Lists.

◦ Adjacency Matrix.

a

dc

b a

b
c
d

b

a

d

d c

c

a b

a c

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

Consists of an array Adj of |V| lists.
One list per vertex.
For u V, Adj[u] consists of all vertices adjacent to u.

Adjacency Lists

a

dc

b a

b
c
d

b

c

d

d c

a

dc

b a

b
c
d

b

a

d

d c

c

a b

a c

If weighted, store weights also in adjacency
lists.

Storage Requirement
For directed graphs:
◦ Sum of lengths of all adj. lists is

out-degree(v) = |E|
vV

◦ Total storage: (V+E)

For undirected graphs:
◦ Sum of lengths of all adj. lists is

degree(v) = 2|E|
vV

◦ Total storage: (V+E)

No. of edges leaving v

No. of edges incident on v. Edge (u,v) is incident
on vertices u and v.

Pros and Cons: adjacency list
Pros
◦ Space-efficient, when a graph is sparse.
◦ Can be modified to support many graph variants.

Cons
◦ Determining if an edge (u,v) G is not efficient.

◦ Have to search in u’s adjacency list. Time complexity:____________
◦ Worst case time complexity to search u’s adjacency list: _________

Adjacency Matrix
|V| |V| matrix A.
Number vertices from 1 to |V|
in some arbitrary manner.
A is then given by:

otherwise0

),(if1
],[

Eji
ajiA ij

1 2 3 4
1 0 1 1 1
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

a

dc

b
1 2

3 4

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

A = AT for undirected graphs.

Space and Time
Space: ().
◦ Not memory efficient for large graphs.

Time: to list all vertices adjacent to u: ().

Time: to determine if (u, v) E: ().

Can store weights instead of bits for weighted
graph.

Exercise
Draw adjacency list and adjacency matrix for the following graph:

H

D G

C A E

B F

Graph-searching Algorithms
Searching a graph:
◦ Systematically follow the edges of a graph

to visit the vertices of the graph.

Used to discover the structure of a graph.

Standard graph-searching algorithms.
◦ Breadth-first Search (BFS).
◦ Depth-first Search (DFS).

Breadth-first Search
Input: Graph G = (V, E), either directed or undirected,
and source vertex s V.

Output:
◦ d[v] = distance (smallest # of edges, or shortest path) from s to v, for all v V.

d[v] = if v is not reachable from s.
◦ [v] = u such that (u, v) is last edge on shortest path s v.

◦ u is v’s predecessor.
◦ Builds breadth-first tree with root s that contains all reachable vertices.

Definitions:
Path between vertices u and v: Sequence of vertices (v1, v2, …, vk) such that
u=v1 and v =vk, and (vi,vi+1) E, for all 1 i k-1.
Length of the path: Number of edges in the path.
Path is simple if no vertex is repeated.

Breadth-first Search
Expands the frontier between discovered and undiscovered
vertices uniformly across the breadth of the frontier.
◦ A vertex is “discovered” the first time it is encountered during the

search.
◦ A vertex is “finished” if all vertices adjacent to it have been

discovered.

Colors the vertices to keep track of progress.
◦ White – Undiscovered.
◦ Gray – Discovered but not finished.
◦ Black – Finished.

◦ Colors are required only to reason about the algorithm. Can be implemented
without colors.

BFS for Shortest Paths

Finished Discovered Undiscovered

S

11

1
S2

2

2

2

2

2

S

3

3 3

3

3

white: undiscovered
gray: discovered
black: finished

Q: a queue of discovered
vertices
v.color: color of v
v.d: distance from s to v
v.: predecessor of v

Example (BFS)

 0

r s t u

v w x y

Q: s
0

Example (BFS)

1 0

1

r s t u

v w x y

Q: w r
1 1

Example (BFS)

1 0

1 2

2

r s t u

v w x y

Q: r t x
1 2 2

Example (BFS)

1 0

1 2

2

2

r s t u

v w x y

Q: t x v
2 2 2

Example (BFS)

1 0

1 2

2 3

2

r s t u

v w x y

Q: x v u
2 2 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v u y
2 3 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u y
3 3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q:

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree

Analysis of BFS
Initialization takes O(V).
Traversal Loop

◦ After initialization, each vertex is
enqueued and dequeued at most
once, and each operation takes O(1).
So, total time for queuing is O(V).

◦ The adjacency list of each vertex is
scanned at most once. The sum of
lengths of all adjacency lists is (E).

Summing up over all vertices => total
running time of BFS is O(V+E), linear in
the size of the adjacency list
representation of graph.

Breadth-first
Tree

For a graph G = (V, E) with source s, the
predecessor subgraph of G is
G = (V , E) where
◦ V={vV : [v] NIL}{s}
◦ E={([v],v)E : v V - {s}}

The predecessor subgraph G is a
breadth-first tree if:
◦ V consists of the vertices reachable from s

and
◦ for all vV , there is a unique simple path

from s to v in G that is also a shortest path
from s to v in G.

The edges in E are called tree edges.
|E | = |V | - 1.

Exercise
Use BFS algorithm to determine the breadth-first tree of the following
graph starting with node A:

H

D G

C A E

B F

Shortest Path
Breadth First Search computes the shortest path between two nodes of
a graph

Proof is in Ch 22.2 – READ IT

Depth-first
Search (DFS)

Explore edges out of the most
recently discovered vertex v.

When all edges of v have been
explored, backtrack to explore other
edges leaving the vertex from which v
was discovered (its predecessor).

“Search as deep as possible first.”

Continue until all vertices reachable
from the original source are
discovered.

If any undiscovered vertices remain,
then one of them is chosen as a new
source and search is repeated from
that source.

Depth-first Search
Input: G = (V, E), directed or undirected. No source vertex
given!

Output:
◦ 2 timestamps on each vertex. Integers between 1 and 2|V|.

◦ d[v] = discovery time (v turns from white to gray)
◦ f [v] = finishing time (v turns from gray to black)

◦ [v] : predecessor of v = u, such that v was discovered during the
scan of u’s adjacency list.

Uses the same coloring scheme for vertices as BFS.

Pseudo-code

Example (DFS)

1/

u v w

x y z

Example (DFS)

1/ 2/

u v w

x y z

Example (DFS)

1/

3/

2/

u v w

x y z

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

Example (DFS)

1/

4/5 3/

2/

u v w

x y z

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

Analysis of DFS
Loops on lines 1-2 & 5-7 take
(V) time, excluding time to
execute DFS-Visit.

DFS-Visit is called once for each
white vertex vV when it’s
painted gray the first time.
Lines 4-7 of DFS-Visit is
executed |Adj[v]| times. The
total cost of executing DFS-Visit
is vV|Adj[v]| = (E)

Total running time of DFS is
(V+E).

Parenthesis TheoremTheorem 22.7Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u
nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 So d[u] < d[v] < f [u] < f [v] cannot happen.

 Like parentheses:
 OK: () [] ([]) [()]

 Not OK: ([)] [(])

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

Example (Parenthesis
Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v
14/15

11/16

u

t

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

Depth-First Trees
Predecessor subgraph defined slightly different from that
of BFS.
The predecessor subgraph of DFS is G = (V, E) where E
={([v],v) : v V and [v] NIL}.
◦ How does it differ from that of BFS?
◦ The predecessor subgraph G forms a depth-first forest

composed of several depth-first trees. The edges in E are called
tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.

Exercise
Apply DFS algorithm to the following graph and draw the depth first
forest.

H

D G

C A E

B F

White-path Theorem
, which was

Theorem 22.9

v is a descendant of u if and only if at time d[u], there is a path
from u to v consisting of only white vertices. (Except for u, which was
just colored gray.)

Classification of Edges
Tree edge: in the depth-first forest. Found by exploring (u, v).

Back edge: (u, v), where u is a descendant of v (in the depth-first
tree).

Forward edge: (u, v), where v is a descendant of u, but not a tree
edge.

Cross edge: any other edge. Can go between vertices in same depth-
first tree or in different depth-first trees.

Theorem:
In DFS of an undirected graph, we get only tree and back edges. No forward or cross
edges.

