Graph Algorithms

Topological Sort
Strongly Connected Components

CSCI 3100

Review & Overview

Last week:
o Introduced the concept of Graph
> Graph terminology
> Graph representation

o Graph traversal algorithms:
° Breadth first search
> Depth first search

This week:
o Continue with graph algorithms
> Topological sort of vertices
o Strongly connected components
° Midterm review - Friday




|dentification of Edges

Edge type for edge (u, v) can be identified when it is first explored by
DFS.

Identification is based on the color of v.
o White — tree edge.
> Gray — back edge.
> Black — forward or cross edge.

Tree edge: in the depth-first forest. Found by exploring (u, v).
Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
Forward edge: (u, v), where v is a descendant of u, but not a tree edge.

Cross edge: any other edge. Can go between vertices in same depth-
first tree or in different depth-first trees.

Example (DFS)

u \Z w




Example (DFS)

Example (DFS)

u

7

X y z




Example (DFS)

u

a

X

Example (DFS)




Example (DFS)

Example (DFS)




Example (DFS)

Example (DFS)




Example (DFS)

Example (DFS)




Example (DFS)

Example (DFS)




Example (DFS)

Example (DFS)




Example (DFS)

Which is correct for DFS?

Recall:
o d[u] — discovery time of vertex u
o f[u] = finish time of vertex u

Given a directed edge (u, v) in graph G, the following is possible:
A. d[u] < d[v] < f[v] < f[u]
B. d[v] < d[u] < f[u] < f[v]
C. d[u] < flu] < d[v] < f[v]
D. d[u] < d[v] < f[u] < f[v]

10



Directed Acyclic Graph

DAG - Directed graph with no cycles.

Good for modeling processes and structures that have a partial order:
ca>bandb>c=>a>c.
> But may have a and b such that neither a > b nor b > a.

Can always make a total order (either a > b or b > a for all a # b) from a
partial order.

Example

brush teeth

get in the car

11



Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

=: Show that back edge = cycle.

> Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.

> Therefore, there is a path from Vto u, so v~ u ~~ visa cycle.

Characterizing a DAG

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

< : Show that a cycle implies a back edge.
° c:cyclein G, v: first vertex discovered in ¢, (u, v) : preceding edge in c.
> At time d[v], vertices of ¢ form a white path v ~~= u. Why?
o uis a descendent of v in depth-first forest.
o Therefore, (u, v) is a back edge.

12



Topological Sort: “sort” DAG
(e 1 (®)

Think of original DAG as a partial order.

Want a total order that extends this partial order.

Topological Sort

Performed on a DAG.

Linear ordering of the vertices of G such that if (u, v) € E, then u appears
somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f[v] forall v € V'

2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: O(V + E).

13



B D
E
Linked List:
Example
B D
E
Linked List:

14



B D
E

Linked List:

E
Example

B D
E

Linked List:

® ©

D

E

15



B D
E
Linked List:
D E
Example
B D

Linked List:
D E

16



A B D
C E
Linked List:
C D E

Example
A B D
c EI
Linked List:

B C D E

17



Example

o

Linked List:

B C D E

Example

o

Linked List:

A B C D E

18



What is the correct topological
sort order of this DFS forest?

A. U->V->Y->X->W->Z
B. z->W->x->y->v->u

u \ w
C. W->2->U->V->y->X
D. z->X->v->y->w->z
X y z

Correctness Proof

Just need to show if (u, v) € E, then f[v] < f[u].

When we explore (u, v), what are the colors of uand v?
° uis gray.
° Is v gray, too?
> No, because then v would be ancestor of u.
° = (u, v)is a back edge.
° = contradiction of Lemma 22.11 (dag has no back edges).
° Is v white?
> Then becomes descendant of u.
° By parenthesis theorem, d[u] < d[v] < f[V] < f[u].
° Is v black?
° Then v is already finished.
° Since we're exploring (u, v), we have not yet finished u.
o Therefore, f[v] < f[u].




Can we adjust Breadth First
Search algorithm to do topological
ordering of a DAG

A. No, because in Breadth First search there is no guarantee that if
d[u]<d[v] then f[v] < f[u]

B. No, because Breadth First Search finishes exploring a given vertex
before exploring gray vertices

C. Yes, if we start with a vertex that has 0 in-degree

D. Yes, if the DAG is connected

Strongly Connected
Components

G is strongly connected if every pair (u, v) of vertices in G is reachable
from one another.

A strongly connected component (SCC) of G is a maximal set of vertices
Cc Vsuchthatforallu, v € C, both u ~~=v and V A~ u exist.

() N o)

P
O O

20



Component Graph

GSCC = (VSCC’ ESCC)_

\V5€C has one vertex for each SCCin G.

E5C has an edge if there’s an edge between the corresponding SCC’s in
G.

G>“Cfor the example considered:

G ()

G>Cis a DAG

Lemma 22.13

Let Cand C' be distinct SCC’s in G, letu, v € C, u’, v' € C, and suppose there is
a path u ™™’ in G. Then there cannot also be a path VA~ v in G.

Proof:
Suppose there is a path v/ ~~vin G.
Then there are paths u AU’ A~V andV A~ V A~ UiInG.

Therefore, uand v' are reachable from each other, so they are not in
separate SCC's.

21



Transpose of a Directed Graph

G'" = transpose of directed G.
o G'=(V, E"),E" = {(u, v) : (v, u) € E}.
> G'is G with all edges reversed.

Can create G"in O(V + E) time if using adjacency lists.

G and G have the same SCC’s. (u and v are reachable from each other
in G if and only if reachable from each other in GT.)

SCC(G)

1. call DFS(G) to compute finishing times f [u] for all u
). compute G'
3

call DFS(GT), but in the main loop, consider vertices in order of
decreasing f [u] (as computed in first DFS)

Yl output the vertices in each tree of the depth-first forest formed in
second DFS as a separate SCC

Time: O(V + E).

22



Example




Example

How does it work?

Idea:
> By considering vertices in second DFS in decreasing order of finishing times
from first DFS, we are visiting vertices of the component graph in
topologically sorted order.

° Because we are running DFS on G', we will not be visiting any v from u,
where v and u are in different components.

Notation:
o d[u] and f [u] always refer to first DFS.
o Extend notation for d and f to sets of vertices U < V:
o d(U) = min,,{d[u]} (earliest discovery time)
o f(U) = max,{ flul} (latest finishing time)

24



SCCs and DFS finishing times

Lemma 22.14
Let Cand C' be distinct SCC’s in G = (V, E). Suppose there is an edge (u, V) € E

such that u € Cand v eC'. Then f (C) >f(C').

Proof: c

Case 1: d(C) < d(C)
o Let x be the first vertex discovered in C.

o At time d[x], all vertices in Cand C' are white.
Thus, there exist paths of white vertices from x
to all vertices in Cand C'.

By the white-path theorem, all vertices in C
and C' are descendants of x in depth-first tree

> By the parenthesis theorem, f [x] = f(C) >
fc).

o

Lemma 22.14

SCCS a n d D FS Let Cand C' be distinct SCC’s in G = (V, E). Suppose

there is an edge (u, v) € Esuch thatu € Cand v

finishing times |cc.mens0 s

Proof:

Case 2: d(C) > d(C)
> Let y be the first vertex discovered in C'. Cc c

At time d[y], all vertices in C' are white and there
is a white path from y to each vertex in C' = all
vertices in C' become descendants of y. Again,
flyl = f(C).

At time d[y], all vertices in C are also white.

By earlier lemma, since there is an edge (u, V), we
cannot have a path from C' to C.

So no vertex in Cis reachable from y.

Therefore, at time f [y], all vertices in C are still
white.

Therefore, for all w € C, f[w] > f [y], which
implies that f (C) >f(C'S.f iy

o

o

o

o

o

o

25



SCCs and DFS finishing times

Corollary 22.15
Let Cand C' be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) € ET, whereu € Cand v € C'.Then f(C) <f(C).

Proof:
(u,v) e E'= (v, u) € E.

Since SCC’s of G and G are the same, f(C') > f(C), by Lemma 22.14.

Correctness of SCC

When we do the second DFS, on GT, start with SCC C such that f(C) is
maximum.

o The second DFS starts from some x € C, and it visits all vertices in C.

> Corollary 22.15 says that since f(C) > f(C') for all C # C/, there are no edges
from Cto C'in G".

> Therefore, DFS will visit only vertices in C.

> Which means that the depth-first tree rooted at x contains exactly the
vertices of C.

26



Correctness of SCC

The next root chosen in the second DFS is in SCC C' such that f(C') is
maximum over all SCC’s other than C.

> DFS visits all vertices in C', but the only edges out of C' go to C, which we’ve
already visited.

> Therefore, the only tree edges will be to vertices in C'.
We can continue the process.

Each time we choose a root for the second DFS, it can reach only
o vertices in its SCC—get tree edges to these,
o vertices in SCC’s already visited in second DFS—get no tree edges to these.

27



