Graph Algorithms

Topological Sort Strongly Connected Components

CSCI 3100

Review & Overview

Last week:

- Introduced the concept of Graph
- Graph terminology
- Graph representation
- Graph traversal algorithms:
 - Breadth first search
 - Depth first search

This week:

- Continue with graph algorithms
- Topological sort of vertices
- Strongly connected components
- Midterm review Friday

Identification of Edges

Edge type for edge (u, v) can be identified when it is first explored by DFS.

Identification is based on the **color of** *v***.**

- White tree edge.
- Gray back edge.
- Black forward or cross edge.

Tree edge: in the depth-first forest. Found by exploring (u, v).

Back edge: (u, v), where u is a descendant of v (in the depth-first tree).

Forward edge: (u, v), where v is a descendant of u, but not a tree edge.

Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

What is the correct topological sort order of this DFS forest?

Can we adjust Breadth First Search algorithm to do topological ordering of a DAG

A. No, because in Breadth First search there is no guarantee that if $d[u]{<}d[v]$ then $f[v]{<}f[u]$

B. No, because Breadth First Search finishes exploring a given vertex before exploring gray vertices

C. Yes, if we start with a vertex that has 0 in-degree

D. Yes, if the DAG is connected

Strongly Connected Components

G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.

A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim V$ and $v \sim u$ exist.

Transpose of a Directed Graph

 $G^{\mathsf{T}} =$ **transpose** of directed *G*.

- $G^{\mathsf{T}} = (V, E^{\mathsf{T}}), E^{\mathsf{T}} = \{(u, v) : (v, u) \in E\}.$
- G^{T} is G with all edges reversed.

Can create G^{T} in $\Theta(V + E)$ time if using adjacency lists.

G and G^{T} have the *same* SCC's. (*u* and *v* are reachable from each other in *G* if and only if reachable from each other in G^{T} .)

<u>SCC(G)</u>

- call DFS(G) to compute finishing times f [u] for all u
- 2. compute G^{T}
- call DFS(G^T), but in the main loop, consider vertices in order of decreasing f [u] (as computed in first DFS)
- output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.

SCCs and DFS finishing times

Corollary 22.15

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E^{\mathsf{T}}$, where $u \in C$ and $v \in C'$. Then f(C) < f(C').

Proof:

 $(u, v) \in E^{\mathsf{T}} \Rightarrow (v, u) \in E.$

Since SCC's of G and G^{T} are the same, f(C') > f(C), by Lemma 22.14.

Correctness of SCC

The next root chosen in the second DFS is in SCC C' such that f(C') is maximum over all SCC's other than C.

- DFS visits all vertices in C', but the only edges out of C' go to C, which we've already visited.
- Therefore, the only tree edges will be to vertices in C'.

We can continue the process.

Each time we choose a root for the second DFS, it can reach only

- vertices in its SCC-get tree edges to these,
- vertices in SCC's *already visited* in second DFS—get *no* tree edges to these.