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Graph Algorithms
Topological Sort
Strongly Connected Components

CSCI 3100

Review & Overview
Last week:

◦ Introduced the concept of Graph
◦ Graph terminology
◦ Graph representation
◦ Graph traversal algorithms:

◦ Breadth first search
◦ Depth first search

This week:
◦ Continue with graph algorithms
◦ Topological sort of vertices
◦ Strongly connected components
◦ Midterm review - Friday
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Identification of Edges
Edge type for edge (u, v) can be identified when it is first explored by 
DFS. 

Identification is based on the color of v.
◦ White – tree edge.
◦ Gray – back edge.
◦ Black – forward or cross edge.

Tree edge: in the depth-first forest. Found by exploring (u, v).

Back edge: (u, v), where u is a descendant of v (in the depth-first tree).

Forward edge: (u, v), where v is a descendant of u, but not a tree edge.

Cross edge: any other edge. Can go between vertices in same depth-
first tree or in different depth-first trees.

Example (DFS)

1/

u v w

x y z
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Example (DFS)

1/ 2/

u v w

x y z

Example (DFS)

1/

3/

2/

u v w

x y z
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B
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Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B
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Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF
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Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF
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Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C
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Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B
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Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Which is correct for DFS?
Recall: 

◦ d[u] – discovery time of vertex u
◦ f[u] – finish time of vertex u

Given a directed edge (u, v) in graph G, the following is possible:

A.  d[u] < d[v] < f[v] < f[u]

B.  d[v] < d[u] < f[u] < f[v]

C.  d[u] < f[u] < d[v] < f[v]

D. d[u] < d[v] < f[u] < f[v]
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Directed Acyclic Graph
DAG – Directed graph with no cycles.

Good for modeling processes and structures that have a partial order:
◦ a > b and b > c  a > c.
◦ But may have a and b such that neither a > b nor b > a.

Can always make a total order (either a > b or b > a for all a  b) from a 
partial order. 

Example
uniform socks

shoes

coat

backpack

brush teeth

eat breakfast

get in the car



12

Characterizing a DAG

Proof:

: Show that back edge  cycle.
◦ Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
◦ Therefore, there is a path from V to u, so v   u  v is a cycle.

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

v u
T T T

B

Characterizing a DAG

Proof (Contd.):

 : Show that a cycle implies a back edge.
◦ c : cycle in G, v : first vertex discovered in c, (u, v) : preceding edge in c. 

◦ At time d[v], vertices of c form a white path v u. Why?
◦ u is a descendent of v in depth-first forest.
◦ Therefore, (u, v) is a back edge.

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

v u
T T T

B
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Topological Sort: “sort” DAG
B

E

D

C

A

C EDA B

Think of original DAG as a partial order.

Want a total order that extends this partial order.

Topological Sort
Performed on a DAG.

Linear ordering of the vertices of G such that if (u, v)  E, then u appears 
somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f [v] for all v  V

2. as each vertex is finished, insert it onto the front of a linked list

3. return the linked list of vertices

Time: (V + E).
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Example

Linked List:

A B D

C E

1/

Example

Linked List:

A B D

C E

1/

2/
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Example

Linked List:

A B D

C E

1/

2/3

E

2/3

Example

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D
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Example

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

Example

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/
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Example

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/7

6/7

C

Example

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B
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Example

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/

Example

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/10

9/10
A
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What is the correct topological 
sort order of this DFS forest?

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

A. u->v->y->x->w->z
B. z->w->x->y->v->u
C. w->z->u->v->y->x
D. z->x->v->y->w->z

Correctness Proof
Just need to show if (u, v)  E, then f [v] < f [u].

When we explore (u, v), what are the colors of u and v?
◦ u is gray.
◦ Is v gray, too?

◦ No, because then v would be ancestor of u.
◦  (u, v) is a back edge.
◦  contradiction of Lemma 22.11 (dag has no back edges).

◦ Is v white?
◦ Then becomes descendant of u.
◦ By parenthesis theorem, d[u] < d[v] < f [v] < f [u].

◦ Is v black?
◦ Then v is already finished.
◦ Since we’re exploring (u, v), we have not yet finished u.
◦ Therefore, f [v] < f [u].
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Can we adjust Breadth First 
Search algorithm to do topological 
ordering of a DAG
A.  No, because in Breadth First search there is no guarantee that if 
d[u]<d[v] then f[v] < f[u]

B.  No, because Breadth First Search finishes exploring a given vertex 
before exploring gray vertices

C.  Yes, if we start with a vertex that has 0 in-degree

D.  Yes, if the DAG is connected

Strongly Connected 
Components
G is strongly connected if every pair (u, v) of vertices in G is reachable 
from one another.

A strongly connected component (SCC) of G is a maximal set of vertices 
C  V such that for all u, v  C, both u      v and v      u exist.
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Component Graph
GSCC = (VSCC, ESCC).

VSCC has one vertex for each SCC in G.

ESCC has an edge if there’s an edge between the corresponding SCC’s in 
G.

GSCC for the example considered:

GSCC is a DAG

Proof:

Suppose there is a path v v in G. 

Then there are paths u      u v and v v u in G. 

Therefore, u and v are reachable from each other, so they are not in 
separate SCC’s.

Lemma 22.13

Let C and C be distinct SCC’s in G, let u, v C, u, v  C, and suppose there is 
a path u        u in G. Then there cannot also be a path v v in G.
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Transpose of a Directed Graph
GT = transpose of directed G.

◦ GT = (V, ET), ET = {(u, v) : (v, u)  E}.
◦ GT is G with all edges reversed.

Can create GT in Θ(V + E) time if using adjacency lists.

G and GT have the same SCC’s. (u and v are reachable from each other 
in G if and only if reachable from each other in GT.)

Algorithm to determine SCCsSCC(G)SCC(G)

1. call DFS(G) to compute finishing times f [u] for all u

2. compute GT

3. call DFS(GT), but in the main loop, consider vertices in order of 
decreasing f [u] (as computed in first DFS)

4. output the vertices in each tree of the depth-first forest formed in 
second DFS as a separate SCC

Time: (V + E).



23

Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d
G

Example

a b c

e f g h

d
GT
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Example

cd

hfg

abe

How does it work?
Idea:

◦ By considering vertices in second DFS in decreasing order of finishing times 
from first DFS, we are visiting vertices of the component graph in 
topologically sorted order.

◦ Because we are running DFS on GT, we will not be visiting any v from u, 
where v and u are in different components.

Notation:
◦ d[u] and f [u] always refer to first DFS.
◦ Extend notation for d and f to sets of vertices U  V:
◦ d(U) = minuU{d[u]} (earliest discovery time)
◦ f (U) = maxuU{ f [u]} (latest finishing time)
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SCCs and DFS finishing times

Proof:

Case 1: d(C) < d(C)
◦ Let x be the first vertex discovered in C. 
◦ At time d[x], all vertices in C and C are white. 

Thus, there exist paths of white vertices from x 
to all vertices in C and C.

◦ By the white-path theorem, all vertices in C 
and C are descendants of x in depth-first tree.

◦ By the parenthesis theorem, f [x] = f (C) > 
f(C).

Lemma 22.14
Let C and C be distinct SCC’s in G = (V, E). Suppose there is an edge (u, v)  E 

such that u  C and v C. Then f (C) > f (C).

C C

u v

x

SCCs and DFS 
finishing times

Proof:

Case 2: d(C) > d(C)
◦ Let y be the first vertex discovered in C. 
◦ At time d[y], all vertices in C are white and there 

is a white path from y to each vertex in C  all 
vertices in C become descendants of y. Again, 
f [y] = f (C).

◦ At time d[y], all vertices in C are also white.
◦ By earlier lemma, since there is an edge (u, v), we 

cannot have a path from C to C.
◦ So no vertex in C is reachable from y.
◦ Therefore, at time f [y], all vertices in C are still 

white.
◦ Therefore, for all w  C, f [w] > f [y], which 

implies that f (C) > f (C).

Lemma 22.14
Let C and C be distinct SCC’s in G = (V, E). Suppose 
there is an edge (u, v)  E such that u  C and v 

C. Then f (C) > f (C).

C C

u v

yx
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SCCs and DFS finishing times

Proof:

(u, v)  ET  (v, u)  E. 

Since SCC’s of G and GT are the same,  f(C) > f (C), by Lemma 22.14.

Corollary 22.15
Let C and C be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v)  ET, where u  C and v  C. Then f(C) < f(C).

Correctness of SCC
When we do the second DFS, on GT, start with SCC C such that f(C) is 
maximum.

◦ The second DFS starts from some x  C, and it visits all vertices in C. 
◦ Corollary 22.15 says that since f(C) > f (C) for all C  C, there are no edges 

from C to C in GT.
◦ Therefore, DFS will visit only vertices in C.
◦ Which means that the depth-first tree rooted at x contains exactly the 

vertices of C.
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Correctness of SCC
The next root chosen in the second DFS is in SCC C such that f (C) is 
maximum over all SCC’s other than C. 

◦ DFS visits all vertices in C, but the only edges out of  C go to C, which we’ve 
already visited.

◦ Therefore, the only tree edges will be to vertices in C.

We can continue the process.

Each time we choose a root for the second DFS, it can reach only
◦ vertices in its SCC—get tree edges to these,
◦ vertices in SCC’s already visited in second DFS—get no tree edges to these.


