Graph Algorithms

Topological Sort
Strongly Connected Components

CSCI 3100

Review & Overview

Last week:
o Introduced the concept of Graph
> Graph terminology
> Graph representation

o Graph traversal algorithms:
° Breadth first search
> Depth first search

This week:
o Continue with graph algorithms
> Topological sort of vertices
o Strongly connected components
° Midterm review - Friday




|dentification of Edges

Edge type for edge (u, v) can be identified when it is first explored by
DFS.

Identification is based on the color of v.
o White — tree edge.
> Gray — back edge.
> Black — forward or cross edge.

Tree edge: in the depth-first forest. Found by exploring (u, v).
Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
Forward edge: (u, v), where v is a descendant of u, but not a tree edge.

Cross edge: any other edge. Can go between vertices in same depth-
first tree or in different depth-first trees.
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Example (DFS)

Which is correct for DFS?

Recall:
o d[u] — discovery time of vertex u
o f[u] = finish time of vertex u

Given a directed edge (u, v) in graph G, the following is possible:
A. d[u] < d[v] < f[v] < f[u]
B. d[v] < d[u] < f[u] < f[v]
C. d[u] < flu] < d[v] < f[v]
D. d[u] < d[v] < f[u] < f[v]
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Directed Acyclic Graph

DAG - Directed graph with no cycles.

Good for modeling processes and structures that have a partial order:
ca>bandb>c=>a>c.
> But may have a and b such that neither a > b nor b > a.

Can always make a total order (either a > b or b > a for all a # b) from a
partial order.

Example

brush teeth

get in the car
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Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

=: Show that back edge = cycle.

> Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.

> Therefore, there is a path from Vto u, so v~ u ~~ visa cycle.

Characterizing a DAG

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

< : Show that a cycle implies a back edge.
° c:cyclein G, v: first vertex discovered in ¢, (u, v) : preceding edge in c.
> At time d[v], vertices of ¢ form a white path v ~~= u. Why?
o uis a descendent of v in depth-first forest.
o Therefore, (u, v) is a back edge.
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Topological Sort: “sort” DAG
(e 1 (®)

Think of original DAG as a partial order.

Want a total order that extends this partial order.

Topological Sort

Performed on a DAG.

Linear ordering of the vertices of G such that if (u, v) € E, then u appears
somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f[v] forall v € V'

2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: O(V + E).
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Example

o

Linked List:
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Linked List:

A B C D E
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What is the correct topological
sort order of this DFS forest?

A. U->V->Y->X->W->Z
B. z->W->x->y->v->u

u \ w
C. W->2->U->V->y->X
D. z->X->v->y->w->z
X y z

Correctness Proof

Just need to show if (u, v) € E, then f[v] < f[u].

When we explore (u, v), what are the colors of uand v?
° uis gray.
° Is v gray, too?
> No, because then v would be ancestor of u.
° = (u, v)is a back edge.
° = contradiction of Lemma 22.11 (dag has no back edges).
° Is v white?
> Then becomes descendant of u.
° By parenthesis theorem, d[u] < d[v] < f[V] < f[u].
° Is v black?
° Then v is already finished.
° Since we're exploring (u, v), we have not yet finished u.
o Therefore, f[v] < f[u].




Can we adjust Breadth First
Search algorithm to do topological
ordering of a DAG

A. No, because in Breadth First search there is no guarantee that if
d[u]<d[v] then f[v] < f[u]

B. No, because Breadth First Search finishes exploring a given vertex
before exploring gray vertices

C. Yes, if we start with a vertex that has 0 in-degree

D. Yes, if the DAG is connected

Strongly Connected
Components

G is strongly connected if every pair (u, v) of vertices in G is reachable
from one another.

A strongly connected component (SCC) of G is a maximal set of vertices
Cc Vsuchthatforallu, v € C, both u ~~=v and V A~ u exist.

() N o)
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Component Graph

GSCC = (VSCC’ ESCC)_

\V5€C has one vertex for each SCCin G.

E5C has an edge if there’s an edge between the corresponding SCC’s in
G.

G>“Cfor the example considered:

G ()

G>Cis a DAG

Lemma 22.13

Let Cand C' be distinct SCC’s in G, letu, v € C, u’, v' € C, and suppose there is
a path u ™™’ in G. Then there cannot also be a path VA~ v in G.

Proof:
Suppose there is a path v/ ~~vin G.
Then there are paths u AU’ A~V andV A~ V A~ UiInG.

Therefore, uand v' are reachable from each other, so they are not in
separate SCC's.
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Transpose of a Directed Graph

G'" = transpose of directed G.
o G'=(V, E"),E" = {(u, v) : (v, u) € E}.
> G'is G with all edges reversed.

Can create G"in O(V + E) time if using adjacency lists.

G and G have the same SCC’s. (u and v are reachable from each other
in G if and only if reachable from each other in GT.)

SCC(G)

1. call DFS(G) to compute finishing times f [u] for all u
). compute G'
3

call DFS(GT), but in the main loop, consider vertices in order of
decreasing f [u] (as computed in first DFS)

Yl output the vertices in each tree of the depth-first forest formed in
second DFS as a separate SCC

Time: O(V + E).
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Example

How does it work?

Idea:
> By considering vertices in second DFS in decreasing order of finishing times
from first DFS, we are visiting vertices of the component graph in
topologically sorted order.

° Because we are running DFS on G', we will not be visiting any v from u,
where v and u are in different components.

Notation:
o d[u] and f [u] always refer to first DFS.
o Extend notation for d and f to sets of vertices U < V:
o d(U) = min,,{d[u]} (earliest discovery time)
o f(U) = max,{ flul} (latest finishing time)
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SCCs and DFS finishing times

Lemma 22.14
Let Cand C' be distinct SCC’s in G = (V, E). Suppose there is an edge (u, V) € E

such that u € Cand v eC'. Then f (C) >f(C').

Proof: c

Case 1: d(C) < d(C)
o Let x be the first vertex discovered in C.

o At time d[x], all vertices in Cand C' are white.
Thus, there exist paths of white vertices from x
to all vertices in Cand C'.

By the white-path theorem, all vertices in C
and C' are descendants of x in depth-first tree

> By the parenthesis theorem, f [x] = f(C) >
fc).

o

Lemma 22.14

SCCS a n d D FS Let Cand C' be distinct SCC’s in G = (V, E). Suppose

there is an edge (u, v) € Esuch thatu € Cand v

finishing times |cc.mens0 s

Proof:

Case 2: d(C) > d(C)
> Let y be the first vertex discovered in C'. Cc c

At time d[y], all vertices in C' are white and there
is a white path from y to each vertex in C' = all
vertices in C' become descendants of y. Again,
flyl = f(C).

At time d[y], all vertices in C are also white.

By earlier lemma, since there is an edge (u, V), we
cannot have a path from C' to C.

So no vertex in Cis reachable from y.

Therefore, at time f [y], all vertices in C are still
white.

Therefore, for all w € C, f[w] > f [y], which
implies that f (C) >f(C'S.f iy

o

o

o

o

o

o
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SCCs and DFS finishing times

Corollary 22.15
Let Cand C' be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) € ET, whereu € Cand v € C'.Then f(C) <f(C).

Proof:
(u,v) e E'= (v, u) € E.

Since SCC’s of G and G are the same, f(C') > f(C), by Lemma 22.14.

Correctness of SCC

When we do the second DFS, on GT, start with SCC C such that f(C) is
maximum.

o The second DFS starts from some x € C, and it visits all vertices in C.

> Corollary 22.15 says that since f(C) > f(C') for all C # C/, there are no edges
from Cto C'in G".

> Therefore, DFS will visit only vertices in C.

> Which means that the depth-first tree rooted at x contains exactly the
vertices of C.
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Correctness of SCC

The next root chosen in the second DFS is in SCC C' such that f(C') is
maximum over all SCC’s other than C.

> DFS visits all vertices in C', but the only edges out of C' go to C, which we’ve
already visited.

> Therefore, the only tree edges will be to vertices in C'.
We can continue the process.

Each time we choose a root for the second DFS, it can reach only
o vertices in its SCC—get tree edges to these,
o vertices in SCC’s already visited in second DFS—get no tree edges to these.
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