Mid-term Review

CSCI 2300

Asymptotic Complexity

Big-O

∘ f(n) = O(g(n)) means that there exists a constant c > 0 and $n_0 > 0$ such that $f(n) \le cg(n)$, for all $n \ge n_0$

Big-Omega

• $f(n) = \Omega(g(n))$ means that there exists a constant c > 0 and $n_0 > 0$ such that $cg(n) \le f(n)$, for all $n \ge n_0$

Big-Theta: Big-O AND Big-Omega

Recurrence Relations

Substitution Method

Master Theorem

Recurrence Trees

Master theorem

Given a recurrence: $T(n) = aT\left(\frac{n}{b}\right) + f(n)$

Compare f(n) to $n^{\log_b a}$

lf f(n) is	Then T(n) is
$O(n^{\log_b a - \varepsilon})$	$\Theta(n^{\log_b a})$
$\Theta(n^{log_b a})$	$\Theta(n^{\log_b a} * \lg(n))$
$\Omega(n^{\log_b a + \varepsilon})$	$\Theta(f(n))$

$$T(n) = 9T\left(\frac{n}{3}\right) + n$$

$$\frac{\int f(n) is}{\partial (n^{\log_b a} - \varepsilon)} \frac{\partial (n^{\log_b a})}{\partial (n^{\log_b a} + ig(n))}}{\frac{\partial (n^{\log_b a})}{\partial (n^{\log_b a} + \varepsilon)}} \frac{\partial (n^{\log_b a})}{\partial (n^{\log_b a} + ig(n))}$$

$$A. \Theta(n^2)$$

$$B. \Theta(n^3)$$

$$C. \Theta(n^2 * \lg(n))$$

$$D. \Theta(n)$$

$$E. \Theta(n^{\log_9 3} * \lg(n))$$

$$T(n) = 3T\left(\frac{n}{9}\right) + n$$

$$If f(n) is Then T(n) is$$

$$O(n^{\log_{b}a} - \varepsilon) \quad \Theta(n^{\log_{b}a})$$

$$\Theta(n^{\log_{b}a}) \quad \Theta(n^{\log_{b}a} * \lg(n))$$

$$\Omega(n^{\log_{b}a + \varepsilon}) \quad \Theta(f(n))$$

$$D. \Theta(n)$$

$$E. \Theta(n^{\log_{9}3} * \lg(n))$$

	If f(n) is	Then T(n) is
$T(n) = T\left(\frac{3n}{5}\right) + 1$	$O(n^{\log_b a - \varepsilon})$	$\Theta(n^{log_b a})$
	$\Theta(n^{log_b a})$	$\Theta(n^{\log_b a} * \lg(n))$
	$\Omega(n^{\log_b a + \varepsilon})$	$\Theta(f(n))$
A. Θ(n ²)		
B. Θ(n ³)		
C. Θ(lg(n))		
D. Θ(n lg(n))		
E. $\Theta(n^{\log_5 3} * \lg(n))$		

Greedy Algorithms

Like dynamic programming, used to solve optimization problems.

Problems exhibit optimal substructure (like DP).

Problems also exhibit the greedy-choice property.

- When we have a choice to make, make the one that looks best right now.
- Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy strategy - the choice that looks best at the moment

- Prove that the greedy choice leads to optimal solution
- Proof strategy:
 - Suppose another optimal solution exists
 - Make changes to that other optimal solution until it is the same as greedy solution
 - Show that changes preserve optimality

Greedy Algorithms

Activity Selection Problem

• Weighted Activity Selection – Greedy Choice did not lead to optimal

Activity Partitioning

Minimize Schedule Delay

Elementary Graph Algorithms

Adjacency List and Adjacency Matrix

Breadth First Search

Depth First Search