
10/11/2018

1

Mid-term Review
CSCI 2300

Asymptotic Complexity
Big-O

◦ f(n) = O(g(n)) means that there exists a constant c > 0 and n0 > 0 such that
f(n) ≤ cg(n), for all n≥n0

Big-Omega
◦ f(n) = Ω(g(n)) means that there exists a constant c > 0 and n0 > 0 such that

cg(n) ≤ f(n), for all n≥n0

Big-Theta: Big-O AND Big-Omega

10/11/2018

2

Among the functions below, which one is
the smallest asymptotically?

A. N lg(N)
B. N2

C. N+lg(N)
D. N
E. Nlg(N)

Among the functions below, which one is
the largest asymptotically?

A. N lg(N)
B. N2

C. N+lg(N)
D. N
E. Nlg(N)

10/11/2018

3

Comparison based sorting
Insertion sort(A, N) // think “picking up cards in sorted order”

for i = 2 to N
Insert A[i] into A[1]..A[i-1] in a sorted order

end for

What is the worst case run time complexity of Insertion sort?
A. N lg(N)
B. N2

C. N+lg(N)
D. N
E. Nlg(N)

Comparison based sorting
Merge-Sort (A, P, R)
if (p < r)

Q = (P + R)/2
Merge-Sort (A, Q, P)
Merge-Sort(A, Q+1, R)
Merge(A, P, Q, R)

What is the correct recurrence relation characterizing Merge-Sort
A. T(N) = T(N/2) D. T(N) = 3N
B. T(N) = 2T(N/2) E. T(N) = 2T(N-1) + N
C. T(N) = 2T(N/2) + N

10/11/2018

4

Recurrence Relations
Substitution Method

Master Theorem

Recurrence Trees

Master theorem
Given a recurrence: ܶ ݊ = ܽܶ

௡

௕
+ ݂(݊)

Compare f(n) to ݊௟௢௚௕௔

If f(n) is Then T(n) is
௟௢௚௕௔ ି க ௟௢௚௕௔

௟௢௚௕௔ ௟௢௚௕௔

௟௢௚௕௔ା க

10/11/2018

5

A. Θ(n2)

B. Θ(n3)

C. Θ(n2 * lg(n))

D. Θ(n)

E. Θ(݊௟௢௚వଷ ∗ lg (݊))

If f(n) is Then T(n) is

ܱ(݊௟௢௚௕௔ ି க) Θ(݊௟௢௚௕௔)

Θ(݊௟௢௚௕௔) Θ(݊௟௢௚௕௔ ∗ lg (݊))

Ω(݊௟௢௚௕௔ା க) Θ(݂ ݊)

A. Θ(n2)

B. Θ(n3)

C. Θ(n2 * lg(n))

D. Θ(n)

E. Θ(݊௟௢௚వଷ ∗ lg (݊))

If f(n) is Then T(n) is

ܱ(݊௟௢௚௕௔ ି க) Θ(݊௟௢௚௕௔)

Θ(݊௟௢௚௕௔) Θ(݊௟௢௚௕௔ ∗ lg (݊))

Ω(݊௟௢௚௕௔ା க) Θ(݂ ݊)

10/11/2018

6

A. Θ(n2)

B. Θ(n3)

C. Θ(lg(n))

D. Θ(n lg(n))

E. Θ(݊௟௢௚ఱଷ ∗ lg (݊))

If f(n) is Then T(n) is

ܱ(݊௟௢௚௕௔ ି க) Θ(݊௟௢௚௕௔)

Θ(݊௟௢௚௕௔) Θ(݊௟௢௚௕௔ ∗ lg (݊))

Ω(݊௟௢௚௕௔ା க) Θ(݂ ݊)

Dynamic Programming
Used to solve optimization problems

◦ Minimize
◦ Maximize

Examples covered in class:
◦ Longest Common Subsequence
◦ Subset Sum Problem
◦ Rod Cutting Problem

Key elements:
◦ Recurrence relation
◦ Overlapping sub-problems

Solution includes memorization step

10/11/2018

7

Greedy Algorithms
Like dynamic programming, used to solve optimization problems.

Problems exhibit optimal substructure (like DP).

Problems also exhibit the greedy-choice property.
◦ When we have a choice to make, make the one that looks best right now.
◦ Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy strategy – the choice that looks best at the moment
◦ Prove that the greedy choice leads to optimal solution
◦ Proof strategy:

◦ Suppose another optimal solution exists
◦ Make changes to that other optimal solution until it is the same as greedy solution
◦ Show that changes preserve optimality

Greedy Algorithms
Activity Selection Problem

◦ Weighted Activity Selection – Greedy Choice did not lead to optimal

Activity Partitioning

Minimize Schedule Delay

10/11/2018

8

Elementary Graph Algorithms
Adjacency List and Adjacency Matrix

Breadth First Search

Depth First Search

