Priority Queue with Heap Prim's Algorithm Revisited Proofs

CSCI 3100

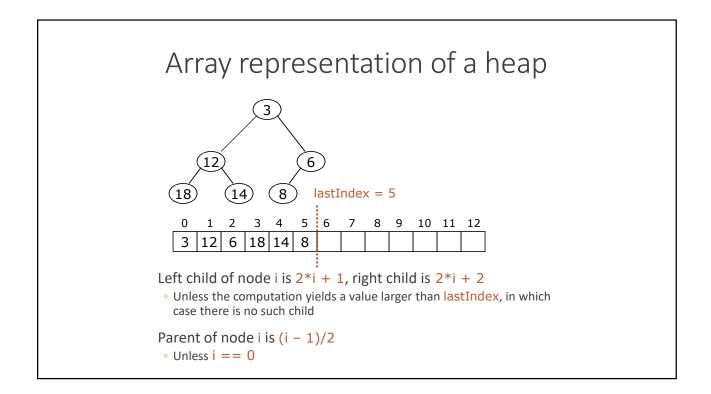
Review & Overview

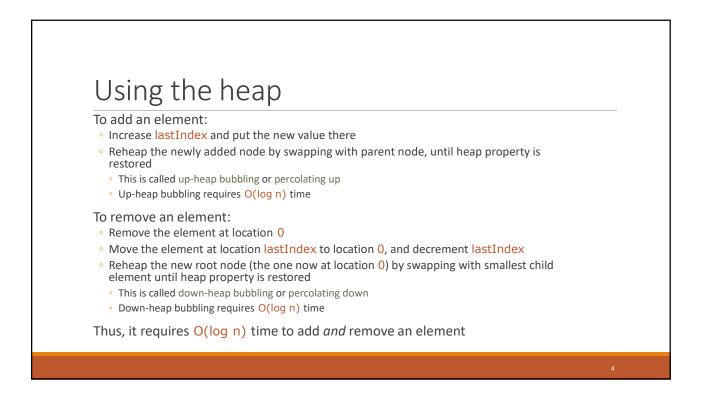
Last week

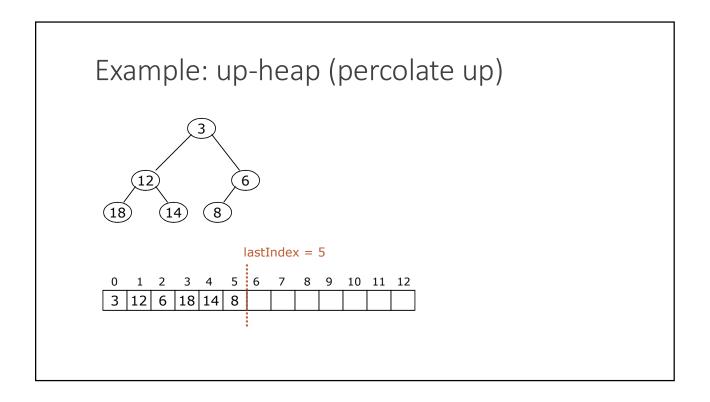
- Minimum spanning trees (MST)
- Kruskal's algorithm
- Prim's algorithm
- Priority queue (started

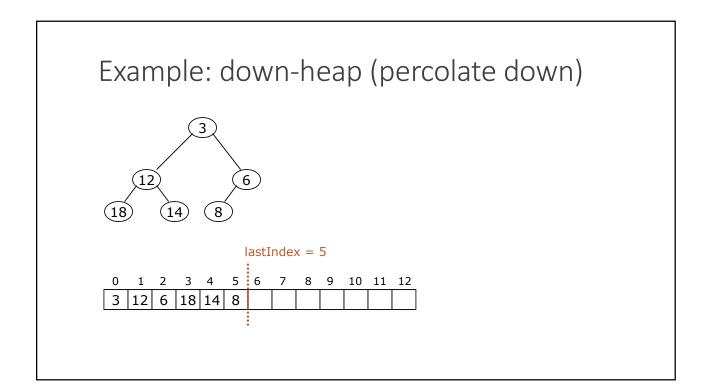
Today

- Priority queue implementation using a heap
- Help with proofs (based on your feedback)
- Prim's algorithm revisited









Comments

A priority queue is a data structure that is designed to return elements in order of priority

Efficiency is usually measured as the *sum* of the time it takes to add and to remove an element

Simple implementations take O(n) time

A heap implementation takes O(log n) time

Thus, for any sort of heavy-duty use, a heap implementation is better

Proof or Fluff

Let T=(V, E) be a tree. Prove that |E|=|V|-1

Consider the following proof by induction on V:

Base case: Clearly, this is true for |V|=1 and |V|=2.

Inductive hypothesis: suppose true for trees with |V|-1 vertices. Then this tree has |V|-1-1 edges. We can construct another tree by adding one new vertex and connecting it to one of vertices in the tree with one edge. Thus, we have a tree with |V| vertices and |V|-1-1+1=|V|-1 edges. This proves that |E|=|V|-1.

A. This proof is valid

B. This proof is flawed because it proves that there exists a tree with |E|=|V|-1 and not the general case

C. This proof is flawed because it doesn't prove that the newly constructed tree is in fact a tree.

D. This proof is flawed for some other reason

Let T=(V, E) be a tree. Prove that |E|=|V|-1

Consider the following proof by induction on V:

Base case: Clearly, this is true for |V|=1 and |V|=2.

Inductive hypothesis: suppose true for trees with n < |V| vertices.

Let T be a tree with |V| vertices. Let e be an edge connecting vertices u and v in T. Since T is a tree, there is a unique path from u to v and it has to be via edge e. If we remove e, T will become disconnected. Now T-{e} consists of two components T_1 and T_2 and those components are trees (since there were no cycles in T to begin with).

Let n_1 be the number of vertices in T_1 and n_2 be the number of vertices in T_2 , so $n_1+n_2=|V|$.

Also $0 < n_1 < |V|$ and $0 < n_2 < |V|$. By inductive hypothesis the number of edges in T₁ is n_1 -1 and the number of edges in T₂ is n_2 -1. Thus, the number of edges in T is n_1 -1+ n_2 -1+1= n_1 + n_2 -1=|V|-1.

- A. This proof is valid
- B. This proof is flawed because $n_1+n_2=|V|$ is false

C. This proof is flawed because T₁ and T₂ are not guaranteed to be trees.

D. This proof is flawed for some other reason

Claim: If G is an undirected graph on n vertices, where n is an even number, then if every vertex of G has a degree of at least n/2 then G is connected.

Proof: Assume, G is not connected, so there are at least two connected components c_1 and c_2 . Since every vertex must have degree of at least n/2, a vertex in c_1 is connected to at least n/2 other vertices i.e. there are at least (n/2)+1 vertices in c_1 . Similarly, in c_2 there must be at least (n/2)+1 vertices.

This gives total number of vertices n/2+1+n/2+1=n+2 which is a contradiction since we have only n vertices. Hence G must be connected.

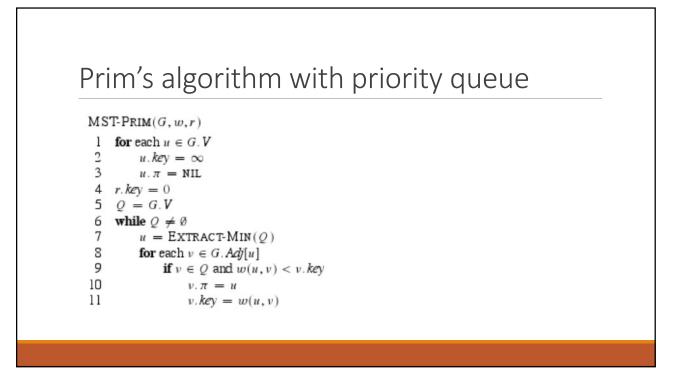
- A. This proof is valid
- B. This proof is flawed because there may be more than two connected components
- C. This proof is flawed because it assumes that G is not connected
- D. This proof is flawed for some other reason

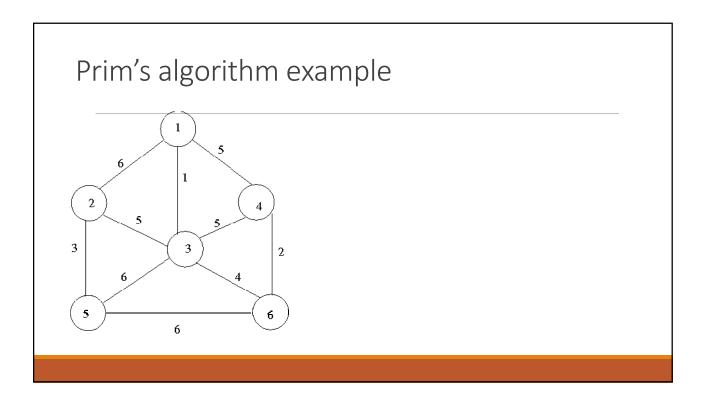
Claim: If G is an undirected graph on n vertices, where n is an even number, then if every vertex of G has a degree of at least n/2 then G is connected.

Proof: Assume that G is connected. Since it is connected, then by definition there exists a path between any two vertices, and there must be at least n=2 vertices in G. Each vertex in G has a degree of at least one.

Adding edges to a graph that is already connected (in order to satisfy the requirement that every node has a degree of at least n/2) does not destroy its connectivity, and so the claim is true.

- A. This proof is valid
- B. This proof is flawed because you cannot add edges to a graph
- C. This proof is flawed because it assumes that G is connected
- D. This proof is flawed for some other reason





7