
10/28/2018

1

Priority Queue with Heap
Prim’s Algorithm Revisited
Proofs
CSCI 3100

Review & Overview
Last week

◦ Minimum spanning trees (MST)
◦ Kruskal’s algorithm
◦ Prim’s algorithm
◦ Priority queue (started

Today
◦ Priority queue implementation using a heap
◦ Help with proofs (based on your feedback)
◦ Prim’s algorithm revisited

10/28/2018

2

Array representation of a heap

Left child of node i is 2*i + 1, right child is 2*i + 2
◦ Unless the computation yields a value larger than lastIndex, in which

case there is no such child

Parent of node i is (i – 1)/2
◦ Unless i == 0

3

12

1418

6

8

3

3 12 6 18 14 8
0 1 2 3 4 5 6 7 8 9 10 11 12

lastIndex = 5

Using the heap
To add an element:

◦ Increase lastIndex and put the new value there
◦ Reheap the newly added node by swapping with parent node, until heap property is

restored
◦ This is called up-heap bubbling or percolating up
◦ Up-heap bubbling requires O(log n) time

To remove an element:
◦ Remove the element at location 0
◦ Move the element at location lastIndex to location 0, and decrement lastIndex
◦ Reheap the new root node (the one now at location 0) by swapping with smallest child

element until heap property is restored
◦ This is called down-heap bubbling or percolating down
◦ Down-heap bubbling requires O(log n) time

Thus, it requires O(log n) time to add and remove an element

4

10/28/2018

3

Example: up-heap (percolate up)

12

1418

6

8

3

3 12 6 18 14 8
0 1 2 3 4 5 6 7 8 9 10 11 12

lastIndex = 5

Example: down-heap (percolate down)

12

1418

6

8

3

3 12 6 18 14 8
0 1 2 3 4 5 6 7 8 9 10 11 12

lastIndex = 5

10/28/2018

4

Comments
A priority queue is a data structure that is designed to return elements
in order of priority

Efficiency is usually measured as the sum of the time it takes to add and
to remove an element

Simple implementations take O(n) time

A heap implementation takes O(log n) time

Thus, for any sort of heavy-duty use, a heap implementation is better

7

Proof or Fluff

10/28/2018

5

Let T=(V, E) be a tree. Prove that
|E|=|V|-1
Consider the following proof by induction on V:

Base case: Clearly, this is true for |V|=1 and |V|=2.

Inductive hypothesis: suppose true for trees with |V|-1 vertices. Then this tree has |V|-1-1 edges.
We can construct another tree by adding one new vertex and connecting it to one of vertices in the
tree with one edge. Thus, we have a tree with |V| vertices and |V|-1-1+1= |V|-1 edges. This proves
that |E|=|V|-1.

A. This proof is valid

B. This proof is flawed because it proves that there exists a tree with |E|=|V|-1 and not the general
case

C. This proof is flawed because it doesn’t prove that the newly constructed tree is in fact a tree.

D. This proof is flawed for some other reason

Let T=(V, E) be a tree. Prove that |E|=|V|-1
Consider the following proof by induction on V:

Base case: Clearly, this is true for |V|=1 and |V|=2.

Inductive hypothesis: suppose true for trees with n<|V| vertices.

Let T be a tree with |V| vertices. Let e be an edge connecting vertices u and v in T. Since T is a tree,
there is a unique path from u to v and it has to be via edge e. If we remove e, T will become
disconnected. Now T-{e} consists of two components T1 and T2 and those components are trees (since
there were no cycles in T to begin with).

Let n1 be the number of vertices in T1 and n2 be the number of vertices in T2, so n1+n2=|V|.

Also 0 < n1 < |V| and 0 < n2 < |V|. By inductive hypothesis the number of edges in T1 is n1-1 and the
number of edges in T2 is n2-1. Thus, the number of edges in T is n1-1+n2-1+1=n1+n2-1=|V|-1.

A. This proof is valid

B. This proof is flawed because n1+n2=|V| is false

C. This proof is flawed because T1 and T2 are not guaranteed to be trees.

D. This proof is flawed for some other reason

10/28/2018

6

Claim: If G is an undirected graph on n vertices, where n
is an even number, then if every vertex of G has a
degree of at least n/2 then G is connected.
Proof: Assume, G is not connected, so there are at least two connected components c1 and c2.
Since every vertex must have degree of at least n/2, a vertex in c1 is connected to at least n/2
other vertices i.e. there are at least (n/2)+1 vertices in c1. Similarly, in c2 there must be at least
(n/2)+1 vertices.

This gives total number of vertices n/2+1+n/2+1=n+2 which is a contradiction since we have only
n vertices. Hence G must be connected.

A. This proof is valid

B. This proof is flawed because there may be more than two connected components

C. This proof is flawed because it assumes that G is not connected

D. This proof is flawed for some other reason

Claim: If G is an undirected graph on n vertices, where n
is an even number, then if every vertex of G has a
degree of at least n/2 then G is connected.
Proof: Assume that G is connected. Since it is connected, then by definition there exists a path
between any two vertices, and there must be at least n=2 vertices in G. Each vertex in G has a
degree of at least one.

Adding edges to a graph that is already connected (in order to satisfy the requirement that every
node has a degree of at least n/2) does not destroy its connectivity, and so the claim is true.

A. This proof is valid

B. This proof is flawed because you cannot add edges to a graph

C. This proof is flawed because it assumes that G is connected

D. This proof is flawed for some other reason

10/28/2018

7

Prim’s algorithm with priority queue

Prim’s algorithm example

