Clustering with MST Shortest Path Problems

CSCI 3100

MST in Clustering Problems

Clustering – a problem of grouping input into a number of components, based on how similar inputs are to each other.

• Define DISTANCE function between inputs

Example 1 – Cluster points on a 2D plot into K sets

• Define DISTANCE(u, v) as the Euclidean distance

Example 2 - Cluster images into K sets based on their similarity

• Define DISTANCE(u, v) as a function of pixel color, intensity, etcc

Build a graph G

- Each input is a vertex on the graph
- There is an edge between each pair of vertices
- The weight of edge (v, w) is DISTANCE(v, w)

K-Clustering of a set of objects U is partitioning of U into k non-empty subsets, such that:

The subsets are as far apart from each other as possible

Define: *spacing* of a k-clustering as the minimum distance between any pair of points in different clusters

In k-clustering, we want to maximize the spacing

Solution:

- Find MST of the graph
- Delete k-1 edges of the resulting tree

Example: k-clustering

Suppose the tree on the right is the MST of the graph

To find 3-clustering, we will remove 2 largest edges: (B, D) and (D, F))

The three clusters are: {A, D}, {B, E}, {C, F}

Then the spacing of this clustering is 5

Prove that removing k-1 edges from MST of a graph results in maximum spacing

Which option is **NOT** a good start of this proof?

- A. Let d be the spacing produced by the algorithm. Show that all other solutions have smaller spacing.
- B. Assume there exists a solution with larger spacing. Show that this leads to a contradiction
- C. Assume that our algorithm results in the maximum spacing. Show that adding k-1 edges to our solution results in an MST.
- D. All above approaches are valid.

Formal definition

In a shortest path problem, we are given:

• A weighted directed graph G = (V, E)

 $\,\circ\,$ With a weight function w: E-> \mathbb{R} mapping edges to real-valued weights

The weight w(p) of path $p = \langle v_0, v_1, ..., v_k \rangle$ is the sum of weights of its constituent edges:

• $w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$

The shortest path from u to v is a with the smallest w(p)

Airport to Downtown

Not all paths have the same travel time/cost/distance

Define a graph where vertices are intersections of roads, edges are roads

Define weight as:

Run shortest path algorithm

Variations of the problem

Single-source shortest path: shortest path from the starting vertex to all other vertices

Single-destination shortest path: shortest path to a given destination vertex from all other vertices

Single-pair shortest path: shortest path from u to v, for given vertices u and v.

All-pairs shortest path: shortest path from u to v for every pair of vertices u and v.

Given a shortest path $p = \langle v_1, v_2, ..., v_k \rangle$ from v_1 to v_k in a directed graph G, the following is true:

- A. The path $\langle v_k, v_{k-1}, ..., v_2, v_1 \rangle$ is the shortest path from v_k to v_1
- B. All other paths from v_1 to v_k have a weight greater than w(p)
- C. All edges of p are in a minimum spanning tree of G
- D. If path $\langle v_i, v_{i+1}, ..., v_j \rangle$ is a sub-path of p, then it is the shortest path from vi to vj
- E. All of the above statements are true

Optimal Substructure of the Shortest Path

Shortest path problem exhibits optimal substructure

Can apply dynamic programming and (possibly) greedy algorithms

Given a weighted graph G=(V, E), where some edge weights can be negative, and shortest path $p=\langle v_1, v_2, ..., v_k \rangle$ from v_1 to v_k , the following is true:

- A. The path p cannot contain a cycle
- B. The path p can contain a cycle, only if the sum of weights of edges in the cycle is less than or equal to 0.
- C. The path p can contain a cycle, only if the sum of weights of edges in the cycle is equal to 0.
- D. None of the above

Negative Weights

Some edges may include negative weights

Shortest path from s to other vertices is **well-defined** if there are no negative weight cycles reachable from source *s*.

Example:

Restrict our attention to shortest paths with at most |V|-1 edges

Properties of shortest paths

Define $\delta(s, u)$ be the weight of a shortest path from s to u.

Triangle inequality: For any edge (u, v), $\delta(s, v) \le \delta(s, u) + w (u, v)$

No-path property: If there is no path from s to v, then $\delta(s, v) = \infty$

Shortest Path estimate

Given a graph G and a starting vertex s,

• Define v.d for all vertices of G as the estimate of the shortest path from s to v

• v.d $\geq \delta(s, v)$

Representing a path

Use "predecessor" notation to represent a path.

Given a path p=<v_1, v_2, ..., v_k> , for all i>1, the predecessor of v_i is v_{i-1}

The predecessor of the starting vertex is NULL

 $v.\pi$ is the predecessor of v in the path.

INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex $v \in G.V$ 2 $v.d = \infty$ 3 $v.\pi = \text{NIL}$ 4 s.d = 0 RELAX(u, v, w)**if** v.d > u.d + w(u, v)v.d = u.d + w(u, v) $v.\pi = u$

Relaxation (compute estimates)

Given a graph G and a starting vertex s

Apply "relaxation" to each vertex, v, until v.d = $\delta(s, v)$

Whenever a smaller v.d is found, update the predecessor of v, v. $\!\pi$

Question: how do we know when v.d = $\delta(s, v)$?

Relaxation properties

Convergence property

- If p is a shortest path from s to v using an edge (u, v), and
- if u.d = $\delta(s, u)$ at any time prior to relaxing edge (u, v),
- then v.d= $\delta(s, v)$ after edge (u, v) has been relaxed.

Path relaxation property

- If p=<v₁, v₂, ..., v_k> is a shortest path from v₁ to v_k, and we relax the edges of p in order (v₁, v₂), (v₂, v₃), ..., (v_{k-1}, v_k), then v_k.d = δ (v₁, v_k)
- This property holds even if other relaxations are intermixed with the relaxation of edges of p

Bellman-Ford Algorithm

Line 1

Lines 2 - 4

Lines 5 - 7

BELLMAN-FORD(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
```

```
2 for i = 1 to |G.V| - 1
```

```
for each edge (u, v) \in G.E
```

```
RELAX(u, v, w)
```

```
5 for each edge (u, v) \in G.E
```

```
\mathbf{if} \ v.d > u.d + w(u,v)
```

return FALSE

8 return TRUE

3

4

6

7