
11/1/2018

1

Clustering with MST
Shortest Path Problems
CSCI 3100

MST in Clustering Problems
Clustering – a problem of grouping input into a number of components, based on how similar
inputs are to each other.

◦ Define DISTANCE function between inputs

Example 1 – Cluster points on a 2D plot into K sets
◦ Define DISTANCE(u, v) as the Euclidean distance

Example 2 – Cluster images into K sets based on their similarity
◦ Define DISTANCE(u, v) as a function of pixel color, intensity, etcc

Build a graph G
◦ Each input is a vertex on the graph
◦ There is an edge between each pair of vertices
◦ The weight of edge (v, w) is DISTANCE(v, w)

11/1/2018

2

K-Clustering of a set of objects U is partitioning
of U into k non-empty subsets, such that:
The subsets are as far apart from each other as possible

Define: spacing of a k-clustering as the minimum distance between any pair of points in different
clusters

In k-clustering, we want to maximize the spacing

Solution:
◦ Find MST of the graph
◦ Delete k-1 edges of the resulting tree

Example: k-clustering
Suppose the tree on the right is the MST of the
graph

To find 3-clustering, we will remove 2 largest
edges: (B, D) and (D, F))

The three clusters are:
{A, D}, {B, E}, {C, F}

Then the spacing of this clustering is 5

A

B C

D

E F

1
5

4
23

11/1/2018

3

Prove that removing k-1 edges from MST
of a graph results in maximum spacing

Which option is NOT a good start of this proof?

A. Let d be the spacing produced by the algorithm. Show that all other solutions have smaller
spacing.

B. Assume there exists a solution with larger spacing. Show that this leads to a contradiction

C. Assume that our algorithm results in the maximum spacing. Show that adding k-1 edges to
our solution results in an MST.

D. All above approaches are valid.

Shortest Path
Suppose you have a job interview

◦ You’ve never been to this location before
◦ You want to be on time
◦ So you look up directions on your phone
◦ There are several suggestions with time estimates

This is an example of the “shortest path”
prooblem

11/1/2018

4

Formal definition
In a shortest path problem, we are given:

◦ A weighted directed graph G = (V, E)
◦ With a weight function w: E-> ℝ mapping edges to real-valued weights

The weight w(p) of path p = <v0, v1, …, vk> is the sum of weights of its constituent edges:
◦ w(p) = ∑ ݅ݒ)ݓ − 1,

(݅ݒ

ୀଵ

The shortest path from u to v is a with the smallest w(p)

Airport to
Downtown
Multiple paths

Not all paths have the same travel
time/cost/distance

Define a graph where vertices are
intersections of roads, edges are roads

Define weight as:
◦ Travel time
◦ Distance
◦ Cost (toll roads)

Run shortest path algorithm

11/1/2018

5

Variations of the problem
Single-source shortest path: shortest path from the starting vertex to all other vertices

Single-destination shortest path: shortest path to a given destination vertex from all other
vertices

Single-pair shortest path: shortest path from u to v, for given vertices u and v.

All-pairs shortest path: shortest path from u to v for every pair of vertices u and v.

Given a shortest path p=<v1, v2, …, vk> from v1
to vk in a directed graph G, the following is
true:

A. The path <vk, vk-1,…., v2, v1> is the shortest path from vk to v1

B. All other paths from v1 to vk have a weight greater than w(p)

C. All edges of p are in a minimum spanning tree of G

D. If path <vi, vi+1, …, vj> is a sub-path of p, then it is the shortest
path from vi to vj

E. All of the above statements are true

11/1/2018

6

Optimal Substructure of the Shortest
Path
Shortest path problem exhibits optimal substructure

Can apply dynamic programming and (possibly) greedy algorithms

Given a weighted graph G=(V, E), where some
edge weights can be negative, and shortest path
p=<v1, v2, …, vk> from v1 to vk, the following is
true:

A. The path p cannot contain a cycle

B. The path p can contain a cycle, only if the sum of weights of edges in
the cycle is less than or equal to 0.

C. The path p can contain a cycle, only if the sum of weights of edges in
the cycle is equal to 0.

D. None of the above

11/1/2018

7

Negative Weights
Some edges may include negative weights

Shortest path from s to other vertices is well-defined if there are no negative weight cycles
reachable from source s.

Example:

Restrict our attention to shortest paths with at most |V|-1 edges

Properties of shortest paths
Define δ(s, u) be the weight of a shortest path from s to u.

Triangle inequality:
For any edge (u, v), δ(s, v) ≤ δ(s, u) + w (u, v)

No-path property:
If there is no path from s to v, then δ(s, v) = ∞

11/1/2018

8

Shortest Path estimate
Given a graph G and a starting vertex s,

◦ Define v.d for all vertices of G as the estimate of the shortest path from s to v
◦ v.d ≥ δ(s, v)

Representing a path
Use “predecessor” notation to represent a path.

Given a path p=<v1, v2, …, vk> , for all i>1, the predecessor of vi is vi-1

The predecessor of the starting vertex is NULL

v.π is the predecessor of v in the path.

11/1/2018

9

Relaxation (compute estimates)

The Bellman-Ford algorithm idea
Given a graph G and a starting vertex s

Apply “relaxation” to each vertex, v, until v.d = δ(s, v)

Whenever a smaller v.d is found, update the predecessor of v, v.π

Question: how do we know when v.d = δ(s, v)?

11/1/2018

10

Relaxation properties
Convergence property

◦ If p is a shortest path from s to v using an edge (u, v), and
◦ if u.d = δ(s, u) at any time prior to relaxing edge (u, v),
◦ then v.d= δ(s, v) after edge (u, v) has been relaxed.

Path relaxation property
◦ If p=<v1, v2, …, vk> is a shortest path from v1 to vk, and we relax the edges of p in order (v1, v2), (v2, v3),

…, (vk-1, vk), then vk.d = δ(v1, vk)
◦ This property holds even if other relaxations are intermixed with the relaxation of edges of p

Bellman-Ford Algorithm
Line 1

Lines 2 – 4

Lines 5 - 7

