11/1/2018

Clustering with MST
Shortest Path Problems

CSCI 3100

MST in Clustering Problems

Clustering — a problem of grouping input into a number of components, based on how similar
inputs are to each other.

> Define DISTANCE function between inputs

Example 1 — Cluster points on a 2D plot into K sets
> Define DISTANCE(u, v) as the Euclidean distance

Example 2 — Cluster images into K sets based on their similarity
> Define DISTANCE(u, v) as a function of pixel color, intensity, etcc

Build a graph G
> Each input is a vertex on the graph
> There is an edge between each pair of vertices
> The weight of edge (v, w) is DISTANCE(v, w)

11/1/2018

K-Clustering of a set of objects U is partitioning
of U into k non-empty subsets, such that:

The subsets are as far apart from each other as possible

Define: spacing of a k-clustering as the minimum distance between any pair of points in different
clusters

In k-clustering, we want to maximize the spacing

Solution:
> Find MST of the graph
> Delete k-1 edges of the resulting tree

Example: k-clustering

Suppose the tree on the right is the MST of the
graph

To find 3-clustering, we will remove 2 largest
edges: (B, D) and (D, F))

The three clusters are:
{A, D}, {B, E}, {C, F}

Then the spacing of this clustering is 5

11/1/2018

Prove that removing k-1 edges from MST
of a graph results in maximum spacing

Which option is NOT a good start of this proof?

A. Letd be the spacing produced by the algorithm. Show that all other solutions have smaller
spacing.

B. Assume there exists a solution with larger spacing. Show that this leads to a contradiction

C. Assume that our algorithm results in the maximum spacing. Show that adding k-1 edges to
our solution results in an MST.

D. All above approaches are valid.

Shortest Path

Suppose you have a job interview
> You’ve never been to this location before

> You want to be on time
> So you look up directions on your phone
> There are several suggestions with time estimates

This is an example of the “shortest path”
prooblem

Formal definition

In a shortest path problem, we are given:
> A weighted directed graph G = (V, E)

> With a weight function w: E-> R mapping edges to real-valued weights

The weight w(p) of path p = <v, v,, ..., v,> is the sum of weights of its constituent edges:

> w(p)= Zi'(:l w(v; 1 V)

The shortest path from u to v is a with the smallest w(p)

T
i MISSOURI

WITHN FEAGH

Airport to
Downtown

Multiple paths

Not all paths have the same travel
time/cost/distance

Define a graph where vertices are
intersections of roads, edges are roads

Define weight as:

o Travel time

> Distance

> Cost (toll roads)

Run shortest path algorithm

11/1/2018

Variations of the problem

Single-source shortest path: shortest path from the starting vertex to all other vertices

Single-destination shortest path: shortest path to a given destination vertex from all other
vertices

Single-pair shortest path: shortest path from u to v, for given vertices u and v.

All-pairs shortest path: shortest path from u to v for every pair of vertices u and v.

Given a shortest path p=<v,, v,, ..., v,> from v,
to v, in a directed graph G, the following is

true:

A. The path <v,, v, 4,...., V,, v;> is the shortest path from v, to v,

B. All other paths from v, to v, have a weight greater than w(p)

C. All edges of p are in a minimum spanning tree of G

D. If path <v,, vi,4, ..., V;> is a sub-path of p, then it is the shortest
path from vi to vj

E. All of the above statements are true

11/1/2018

11/1/2018

Optimal Substructure of the Shortest
Path

Shortest path problem exhibits optimal substructure

Can apply dynamic programming and (possibly) greedy algorithms

Given a weighted graph G=(V, E), where some
edge weights can be negative, and shortest path
p=<V,, V,, ..., V> from v, to v,, the following is
true:

A. The path p cannot contain a cycle

B. The path p can contain a cycle, only if the sum of weights of edges in
the cycle is less than or equal to 0.

C. The path p can contain a cycle, only if the sum of weights of edges in
the cycle is equal to 0.

D. None of the above

11/1/2018

Negative Weights

Some edges may include negative weights

Shortest path from s to other vertices is well-defined if there are no negative weight cycles
reachable from source s.

Example:

Restrict our attention to shortest paths with at most |V|-1 edges

Properties of shortest paths

Define &(s, u) be the weight of a shortest path from s to u.

Triangle inequality:
For any edge (u, v), (s, v) £ 6(s, u) + w (u, v)

No-path property:
If there is no path from s to v, then §(s, v) = oo

11/1/2018

Shortest Path estimate

Given a graph G and a starting vertex s,
> Define v.d for all vertices of G as the estimate of the shortest path fromstov

o wv.d2=6(s, v)

Representing a path

Use “predecessor” notation to represent a path.

Given a path p=<v,, v,, ..., v,>, for all i>1, the predecessor of v;is v,
The predecessor of the starting vertex is NULL

v.1tis the predecessor of v in the path.

11/1/2018

INITIALIZE- SINGLE-SOURCE((G, 5) RELFLX! MV, W)

l fureach'.'erte;ueG.V 1l ifv.d>ud+ wiu,v)

2 v.d = o0 9 v.d = u.d+ wiu,v)
3 v.mr = NIL 3 i

4 5d=0 M =

Relaxation (compute estimates)

The Bellman-Ford algorithm idea

Given a graph G and a starting vertex s

Apply “relaxation” to each vertex, v, until v.d = 5(s, v)
Whenever a smaller v.d is found, update the predecessor of v, v.it

Question: how do we know when v.d = §(s, v)?

Relaxation properties

Convergence property
o If p is a shortest path from s to v using an edge (u, v), and

o if u.d = 8(s, u) at any time prior to relaxing edge (u, v),
> then v.d= §(s, v) after edge (u, v) has been relaxed.

Path relaxation property

o If p=<vy, V,, ..., V> is a shortest path from v, to v,, and we relax the edges of p in order (v,, v,), (v,, v3),
wer (Vs V), then vp.d = 6(vy, v)

> This property holds even if other relaxations are intermixed with the relaxation of edges of p

Bellman-Ford Algorithm

Line 1

BELLMAN-FORD(G, w, 5)

INITIALIZE- SINGLE- SOURCE(G,)
fori =1t0)|G.V|—-1
for eachedge (v,v) € G.E
RELAX(u, v, w)
for each edge (u,v) € G.E
ifv.d>ud+ wiu,v)
return FALSE
return TRUE

Lines2 -4

Lines5-7

003 Ov LN &l 1D —

11/1/2018

10

