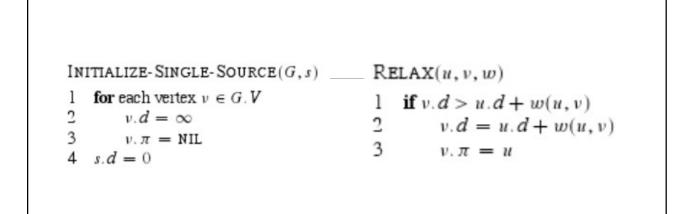
Shortest Path: Bellman-Ford Algorithm Shortest Path in a DAG

CSCI 3100



Relaxation (compute estimates)

The Bellman-Ford algorithm idea

Given a graph G and a starting vertex s

Apply "relaxation" to each vertex, v, until v.d = $\delta(s, v)$

Whenever a smaller v.d is found, update the predecessor of v, v. $\!\pi$

Question: how do we know when v.d = $\delta(s, v)$?

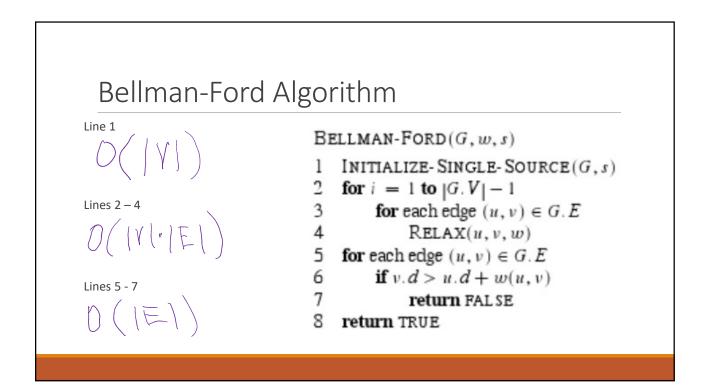
Relaxation properties

Convergence property

- If p is a shortest path from s to v using an edge (u, v), and
- if u.d = $\delta(s, u)$ at any time prior to relaxing edge (u, v),
- then v.d= $\delta(s, v)$ after edge (u, v) has been relaxed.

Path relaxation property

- If $p = \langle v_1, v_2, ..., v_k \rangle$ is a shortest path from v_1 to v_k , and we relax the edges of p in order (v_1, v_2) , (v_2, v_3) , ..., (v_{k-1}, v_k) , then v_k .d = $\delta(v_1, v_k)$
- This property holds even if other relaxations are intermixed with the relaxation of edges of p



$$S = a \quad |V| = 5$$

$$a \cdot d = 0$$

$$c \cdot d = 0$$

Key element of Bellman-Ford Algorithm

How do we know that after |V|-1 iterations, each edge has been relaxed as much as possible: $\circ v.d = \delta(s,v)$ OR

• Path from s to v has a negative weight cycle

If shortest path exists, it will use at most |V|-1 edges

Let v be any vertex reachable from s via a shortest path: $(v_1, v_2, ..., v_k)$, where $s=v_1$ and $v=v_k$

Each of the |V|-1 iterations relaxes |E| edges

Among edges relaxed at iteration i is edge (v_{i-1}, v_i)

By the path relaxation property, $v.d = vk.d = \delta(s, v)$

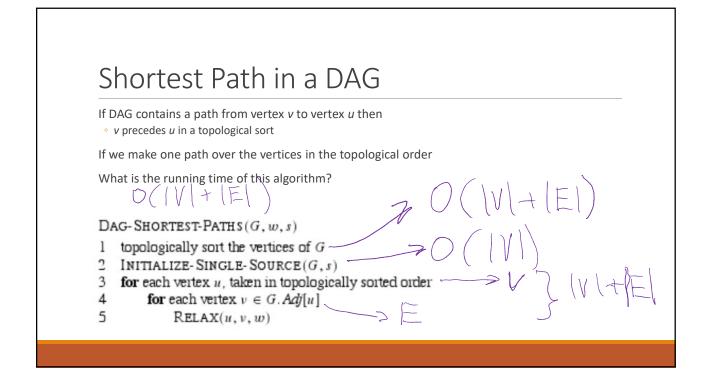
Shortest Path in a Directed Acyclic Graph (DAG)

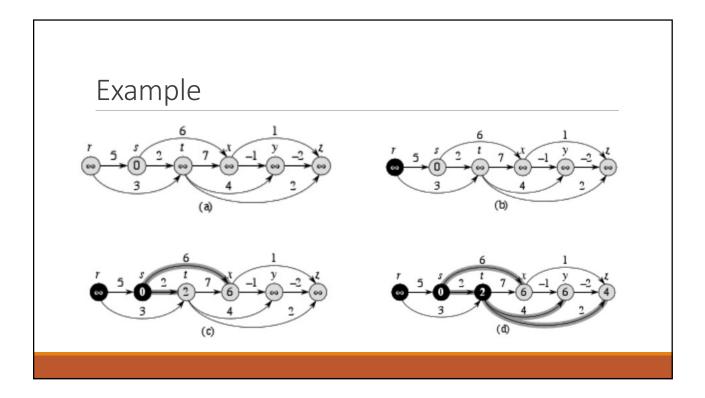
Shortest path in a DAG is well defined (no cycles, so no negative weight cycles)

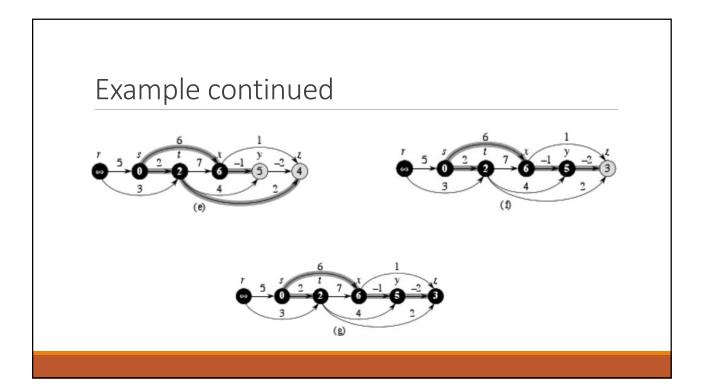
Relax edges of a DAG in the topological sort order

How do we get a topological sort order of vertices of a DAG?

- A. Use Depth First Search
- B. Use Prim's algorithm
- C. Use Bellman-Ford algorithm
- D. Use Kruskal's algorithm
- E. Use priority queue







If $p = (v_1, v_2, ..., v_k)$ is the shortest path from $s=v_1$ to $v=v_k$, produced by Shortest Path in DAG algorithm, then

A. Edges of p are relaxed in the order (v_1, v_2) , (v_2, v_3) , ..., (v_{k-1}, v_k)

- B. At iteration k, v_k .d= $\delta(s, v_k)$
- C. When relaxing edges adjacent to v_i , v_i .d= $\delta(s, v_i) < \infty$
- D. For any vertex $v_i (v_1, v_2, ..., v_i)$ is the shortest path from s to v_i
- E. All of the above are true

Application of Shortest Path in DAG

Determine a critical path in a schedule

Represent jobs as edges

Edge weights – time to perform each job

If edge (u, v) enters vertex v and edge (v, x) leaves vertex v, then job (u, v) must be done before job (v, x)

A path through this DAG – a sequence of jobs that need to be performed in a particular order

In this context – a critical path is a longest path through the graph

Modify weights to be the negative of the time to perform each job and run Shortest Path in DAG algorithm