
11/12/2018

1

Application of Bellman-
Ford Algorithm
Dijkstra’s Algorithm
CSCI 3100

Example application of Shortest Path
In forex trading, one can exchange currency of one country to currency of another country. One
example use EUR/USD where Euros are exchanged for US Dollars. Another example is USD/EUR
where US Dollars are exchanged for Euros.

Let <C1>/<C2> = X be a currency pair quote
◦ C1 – base currency. Base currency is equal to 1 unit.
◦ C2 – counter currency. X is the amount of counter currency 1 unit of base currency can buy.

Example:
◦ USD/JPY = 113.37
◦ 1 US Dollar can buy 113.37 Japanese Yen

Suppose we have quotes for various currency pairs. We may be able to make some money on
this.

11/12/2018

2

Converting multiple currencies
USD/JPY = 113.37, JPY/EUR = 0.008, EUR/USD = 1.14

1 USD can buy 113.37 JPY.

113.37 JPY can buy 0.90696 EUR

0.90696 EUR can buy 1.0039 USD

So if we have 1000 USD, we can convert it to 1003.9 USD => Make $3.9

If we have 1000000 USD, we can convert it to 1003900 USD => Make $3900

This is called Arbitrage Opportunity

Arbitrage Opportunity
Suppose we are given:

◦ N currencies: c1, c2, …, cN

◦ N x N table of exchange rages R[x, y]: one unit of cx can buy R[x, y] units of cy

If there is a sequence of currencies: cx1, cx2, …, cxk such that:
◦ R[x1, x2]*R[x2, x3]*…*R[xk, x1] > 1
◦ Then we have an arbitrage opportunity

Represent each currency as a vertex.

Select edge weights such that:
◦ R[x1, x2]*R[x2, x3]*…*R[xk, x1] > 1
◦ Then the cycle (x1, x2, …, xk, x1) is a negative weight cycle

Use Bellman-Ford algorithm to determine if a graph has a negative weight cycle

11/12/2018

3

Selecting Edge Weights
Transform R[x1, x2]*R[x2, x3]*…*R[xk, x1] > 1

To f(R[x1, x2])+f(R[x2, x3])+…+f(R[xk, x1]) > f(1) using logarithm

log(R[x1, x2]*R[x2, x3]*…*R[xk, x1]) > log(1) = 0

log(R[x1, x2]) + log(R[x2, x3]) …+log(R[xk, x1]) > 0

-log(R[x1, x2]) - log(R[x2, x3]) … - log(R[xk, x1]) < 0

log(1/R[x1, x2]) + log(1/R[x2, x3]) …+log(1/R[xk, x1]) < 0

Weight of edge (xv, xw) = log(1/R[xv, xw))

Finding negative weight cycle
Add dummy node s

Connect s to all vertices with an edge of weight 0

This ensures that every negative weight cycle is reachable from s

Run Bellman-Ford algorithm

If Bellman-Ford returns false, there is a negative weight cycle

This means there is an arbitrage opportunity

11/12/2018

4

Example

X Y Z

X 1 8 1/4

Y 1/8 1 1/16

z 4 16 1

Rates: R[v, w]

X Y Z

X 0 -3 2

Y 3 0 4

z -2 -4 0

Edge Weights: lg(1/R[v, w])

A. X->Y->Z->X forms a negative weight cycle, and
thus presents an opportunity to make money

B. X->Y->Z->X forms a negative weight cycle; we
would loose money on such an exchange

C. There is no opportunity to make money on any
series of exchanges because R[v, w] = 1/R[w, v],
for all currencies v and w.

D. X->Z->Y->X forms positive weight cycle, and thus
presents an opportunity to make money

E. None of the above

Dijkstra’s Algorithm: Shortest path in G,
where G has non-negative edge weights
Dijkstra(G, s)

for each v V

d[v] = ;

v.π = NULL

d[s] = 0; S = ; Q = V;

while (Q)

u = ExtractMin(Q);

S = S U {u};

for each v u->Adj[]

if (d[v] > d[u]+w(u,v))

d[v] = d[u]+w(u,v);
v.π = u;

Relaxation
Step

Complexity:

11/12/2018

5

Example: s = A.
On the first iteration of Dijkstra’s algorithm, we’ll
extract vertex A from the priority queue and relax
edges adjacent to A. What will be the estimates for
each vertex in the priority queue at that time?

A. d[B] = 10, d[C] = 5, d[D] = 6

B. d[B] = 10, d[C] = 5, d[D] = ∞

C. d[B] = 9, d[C] = 5, d[D] = 6

D. d[A] = 0, d[B] = 10, d[C] = 5, d[D] = ∞

E. None of the above

B

C

DA

10

4 3

2

15

Observations about Dijkstra’s Algorithm
Greedy strategy

◦ Vertex with the smallest estimate is added to set S

One vertex is removed from the queue each time => queue will eventually become empty

Estimates of vertices in S don’t change. To prove correctness, we need to show that d[x] = δ(s, x)
when x is moved to S and s is the starting vertex.

Base case: true for the first vertex added to S. That vertex is s, d[s] = 0, and δ(s, s) = 0;

Inductive hypothesis: Suppose d[v] = δ(s, v), for all vertices in S. Show that when vertex u is
moved to S, d[u] = δ(s, u)

11/12/2018

6

Suppose d[v] = δ(s, v), for all vertices in S.
Show that when vertex u is moved to S, d[u] =
δ(s, u). How can we start such a proof?
A. Suppose d[u] = δ(s, u), when u is moved to S

B. Move vertex u to S and show that there is a shortest path from s
to u in the subgraph formed by vertices of S.

C. Let d[u] = d[s] + w(s, u), where w(s, u) is the weight of edge from
vertex s to vertex u.

D. Suppose d[u] ≠ δ(s, u), when u is moved to S

E. Any of the above statements can be used to start this proof

Sketch of the correctness proof
Claim 1: There is a shortest path from s to u

Claim 2: Let p be the shortest path from s to u, where s is in S and u is in V-S. Let this path use an
edge (x, y), where x is in S and y is in V-S. Then d[y] = δ(s, y).

Claim 3: d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u]

Claim 4: Since vertex u was selected from the priority queue before vertex y, we know that
d[u] ≤ d[y]. But by claim 3, we have: d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u]. This is only possible if
d[y] = δ(s, y) = δ(s, u) = d[u]. This contradicts our assumption that d[u] ≠ δ(s, u).

Claim 1 => Claim 2 => Claim 3 => Claim 4.

11/12/2018

7

Recall the convergence property

If edge (u, v) is in the shortest path and d[u] = δ(s, u), then after
relaxing edge (u, v), d[v] = δ(s, v). The convergence property can be
used to prove:

A. Claim 1: There is a shortest path from s to u

B. Claim 2: Let p be the shortest path from s to u, where s is in S and
u is in V-S. Let this path use an edge (x, y), where x is in S and y is in
V-S. Then d[y] = δ(s, y).

C. Claim 3: d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u]

Claim 1
There is a shortest path from s to u

11/12/2018

8

Claim 2:
Let p be the shortest path from s to u, where s is in S and u is in V-S. Let this path use an edge (x,
y), where x is in S and y is in V-S. Then d[y] = δ(s, y).

Claim 3
d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u]

