CSCI 3100

Comparison Based
Algorithms

Overview

* Analyzing array search problems using
comparisons:

* Find min

* Find min and max

* Find second largest element

* How many comparisons does it take?
* Is this the best we can do?

e Comparison based sorting
* Insertion sort

* Heapsort
* Radix sort

Find Minimum Value in an Array

6<1 H

B is the minimum

Find minimum value in an array

MINIMUM(A) * Q: How many comparisons does
1 min = A(1) it take?

2 fori=2to A.length * |s this the best we can do?

3 if (min > A[i])

4 min = A[i]

5 return min

Find Min and Max

e Simple solution: find min, then find max
* Q: how many comparisons does this take?

Find Min and Max (faster solution)

— 2 5| s i e e e

'I_l_l

— I G is greater than 5, so G is
nsidered maximum, while 5 is
considered minimum
r 4 b Y
2 compare the curment minimum
— A— and maximum with the pair (5,6).
2 with 5 and 2 with &!

\ 4 $

After these comaprisons 2 is the

current minimum and & is the

current maximum!
43:::ntinue with the next pair - (4, 1)

Find Min and Max (faster solution algorithm)

MIN MAX(A) * Q: How many comparisons does

min = A[1], max = A[1] it take?
for j =2 to A.length
if (A[j] < A[j+1])
temp_min = A[j]
temp_max = A[j+1]
else
temp_min = A[j+1]
temp _max = Alj]
if (temp_min < min)
10 min = temp_min
11 if (temp_max > max)
12 max = temp_max
13 return [min, max]

OCOoONOTULTPEL WNR

Find the seconds largest element

* How many comparisons does it take?
* |s this the best we can do using element comparison?

Comparison based
sorting

Insertion Sort

INSERTION-SORT(A)

1 for j = 2to A.length

2 key = A[j]

3 // Insert A[j] into the sorted
sequence A[l..j — 1].

i =j—1

while / > 0 and A[i] > key
Ali + 1] = Ali]
i =i—1

Ali + 1] = key

01O W A

9 7|6 (1517 51011
@5 15[17[5 [10] 11
t|??!15 17 5 [10] 11

67 [o#8]17]5 [10]11

6[7]0][157] 5 [10]11

67 [9]15]17 8N 10] 11
¢ —

5 [6]7]0]15][17 [H0 11

—

5[6]7[9]10]15[17 [F

A
s[6]7[o[10]11]15]17

Analyze insertion sort

INSERTION-SORT (A)

* How many comparisons? 1 for j = 2to A.length

* Can the number of comparisons 2 key = Alj]
be reduced? 3 // Insert A[j] into the sorted

sequence A[l..j — 1].

j = j—1

while ;i > 0 and A[i] > key
Ali + 1] = AJi]
i =i—1

Ali + 1] = key

* How many shifts?
* |f input A is sorted
* If input A is sorted in reverse order

* Analysis of insertion sort: pages
24 - 28

01 N W A

INSERTION-SORT (A) cost times

1 for j = 2to A.length ¢y n
2 key = A[/j] 2 n—1
3 // Insert A[/] into the sorted
sequence A[l..j — 1]. 0 n—1
-4 i = j—1 Cq n—1
5 whilei > 0and A[i] > key Cs Y
6 Ali + 1] = Ali] Cé Z?zz(tj — 1)
7 i =i—1 SR SN (7R)
8 Ali + 1] = key Cg n—1

Tn) = cn+cn—1)+cyn—1)+ c'Sth + C¢ Z(zj — 1)

Jj=2 j=2

+ ¢, Z(r,- —L)t gl — 1} .

j=2

Best, Worst, and Average Cases

natist
natist

nat is t

he best case running time of this algorithm?

ne worst case running time of this algorithm?

he average case running time of this algorithm?

