
11/11/2018

1

All Pairs Shortest Paths
CSCI 3100

Shortest Path between all pairs
Brute force solution:
◦ Calculate all simple paths between every pair of vertices

◦ Number of pairs of vertices: ||
ଶ = ଵ

ଶ
 ܸ ଶ − ܸ = ܱ(ܸ ଶ)

◦ Number of simple paths between two vertices: worst case ܱ(2||)

◦ Select the shortest path
◦ Worst case complexity: ܱ(ܸ ଶ2||)

Repeated Bellman-Ford solution
◦ Run Bellman-Ford with a new starting vertex each time, total of |V| runs
◦ Complexity: ܱ(ܸ ∗ ܸ ∗ (|ܧ|
◦ Worst case: ܱ ܸ ସ , ܧ ݂݅ ≈ |ܸ|ଶ

11/11/2018

2

Dynamic Programming Solutions
Repeated squaring: ܱ(ܸ ଷ lg ܸ - Ch 25.1

Floyd-Warshall algorithm: ܱ(ܸ ଷ) – Ch 25.2

Graph is represented as an adjacency matrix W

W[x, y] is the weight of edge (x, y)

Produce a matrix with shortest path distances between any pairs of vertices

Optimal Substructure: Floyd-Warshall
Let (v1, v2, …, vm) be a shortest path from v1 to vm

Consider an intermediate vertex of this path: any vertex in the path other than
v1 and vm

Let vertices of G be V = {1, 2, …, N}

Consider a subset of vertices {1, 2, …, k} for some k

For any pair of vertices x, y, consider all paths where intermediate vertices are in
the set {1, 2, …, k}

Let p be the shortest of such paths

11/11/2018

3

Example
1 2

3 4

2

361

2

• Let x = 1, y = 4
• Let k = 0: intermediate set is empty

• 1->4: weight 6
• Let k = 1: intermediate set {1}

• 1->4: weight 6
• Let k = 2: intermediate set {1, 2}

• 1->4: total weight 6
• 1->2->4: total weight 5

• Let k = 3: intermediate set {1, 2, 3}
• 1->4: total weight 6
• 1->2->4: total weight 5
• 1->3->4: total weight 3

What can we observe about a shortest path p from
x to y built from intermediate vertices
{1, 2, …, k} only?

A. If k is not in path p, then all vertices of path p are from the set {1, 2,
…, k-1}

B. If k is in path p, then there is a shortest path from x to k using only
vertices from the set {1, 2, …, k-1}

C. If k is in path p, then there is a shortest path from k to y using only
vertices from the set {1, 2, …, k-1}

D. All of the above

E. None of the above

X y{1, 2, …, k}

11/11/2018

4

X y{1, 2, …, k}

X y{1, 2, …, k-1} y

X k{1, 2, …, k-1} {1, 2, …, k-1} y

k is not in the path

k is in the path

Optimal substructure
Let Dk[x, y] be the weight of the shortest path from x to y using vertices {1, 2, …, k}

When k = 0, no intermediate vertices are used, so D0[x, y] = W[x, y]

When k > 0
◦ If k is in the shortest path from x to y, then Dk[x, y] = Dk-1[x, k] + Dk-1[k, y]
◦ If k is not in the shortest path from x to y, then Dk[x, y] = Dk-1[x, y]

Recursive definition:

ܦ ,ݔ ݕ = ൝
ܹ ,ݔ ݕ ݂݅ ݇ = 0

min (ܦିଵ ,ݔ ݕ , ିଵܦ ,ݔ ݇ + ିଵܦ ݇, ݕ) ݂݅ ݇ > 0

11/11/2018

5

Compute Dk using “bottom up” approach
Compute D0 = W

Compute D1 using D0

...

Compute DN using DN-1

Return DN

FLOYD-WARSHALL (W)

1 N = W.rows

2 D0 = W

3 for k = 1 to N

4 Dk is an N x N matrix

5 for x = 1 to N

6 for y = 1 to N

7 Dk[x,y] = min(Dk-1[x,y], Dk-1[x,k]+Dk-1[k,y])

8 Return DN

Complexity:

11/11/2018

6

Reconstructing shortest paths
Modify the algorithm to compute predecessor matrix PN

PN[x, y] = k means that the last edge in the shortest path from x to y is (k, y)

Floyd-Warshall algorithm has the following line for computing
the shortest path distance between vertices x and y:
Dk[x,y] = min(Dk-1[x,y], Dk-1[x,k]+Dk-1[k,y])
We want to compute predecessor matrix Pk. When k = 0, then Pk

[x, y]=x, if (x, y) is an edge. Otherwise Pk [x, y] = NULL. How can
we calculate Pk [x, y] when k > 0?
A. Pk-1[x,y] if Dk-1[x,y] < Dk-1[x,k]+Dk-1[k,y])

B. Pk-1[k,y] if Dk-1[x,k]+Dk-1[k,y] < Dk-1[x,y]

C. Pk-1[x,k] if Dk-1[x,k]+Dk-1[k,y] < Dk-1[x,y]

D. A and B

E. A and C

11/11/2018

7

Example
K = 0, D0 =

0 2 1 6
2 0 ∞ 3
1 ∞ 0 2
6 3 2 0

P0 =

ܰ 1 1 1
2 ܰ ܰ 2
3 ܰ ܰ 3
4 4 4 ܰ

K = 1, D1 =

0 2 1 6
2 0 3
1 0 2
6 3 2 0

P1 =

ܰ 1 1 1
2 ܰ 2
3 ܰ 3
4 4 4 ܰ

K = 2, D2 =

0 2 1
2 0 3 3
1 3 0 2
 3 2 0

P2 =

ܰ 1 1
2 ܰ 1 2
3 1 ܰ 3
 4 4 ܰ

K = 3, D3 =

0 2 1
2 0 3 3
1 3 0 2
 3 2 0

P3 =

ܰ 1 1
2 ܰ 1 2
3 1 ܰ 3
 4 4 ܰ

1 2

3 4

2

361

2

K = 4, D4 =

0 2 1
2 0 3 3
1 3 0 2
 3 2 0

P4 =

ܰ 1 1
2 ܰ 1 2
3 1 ܰ 3
 4 4 ܰ

