11/11/2018

All Pairs Shortest Paths

CSCI 3100

Shortest Path between all pairs

Brute force solution:
o Calculate all simple paths between every pair of vertices
> Number of pairs of vertices: (l'z/l) =% (qviz=1vp=o(v)»)
> Number of simple paths between two vertices: worst case 0(2!V1)
o Select the shortest path
> Worst case complexity: 0 (|V[?2IV)

Repeated Bellman-Ford solution

> Run Bellman-Ford with a new starting vertex each time, total of |V| runs
o Complexity: O(|V| = |V| = |E|)

> Worst case: O(|V|Y),if |E| = |V|?

11/11/2018

Dynamic Programming Solutions

Repeated squaring: O(|V |3 1g(|V|) - Ch 25.1
Floyd-Warshall algorithm: O (|V|®) — Ch 25.2

Graph is represented as an adjacency matrix W
WI[x, y] is the weight of edge (x, y)

Produce a matrix with shortest path distances between any pairs of vertices

Optimal Substructure: Floyd-Warshall

Let (v4, v, ..., V) be a shortest path from v, to v,

Consider an intermediate vertex of this path: any vertex in the path other than
v, and v,

Let vertices of G be V=11, 2, ..., N}
Consider a subset of vertices {1, 2, ..., k} for some k

For any pair of vertices x, y, consider all paths where intermediate vertices are in
theset {1, 2, ..., k}

Let p be the shortest of such paths

11/11/2018

Example < tetx=1y=4

Let k = 0: intermediate set is empty
e 1->4: weight 6
Let k = 1: intermediate set {1}
* 1->4: weight 6
Let k = 2: intermediate set {1, 2}
* 1->4: total weight 6
* 1->2->4: total weight 5
Let k = 3: intermediate set {1, 2, 3}
* 1->4: total weight 6
* 1->2->4: total weight 5
e 1->3->4: total weight 3

What can we observe about a shortest path p from

x to y built from intermediate vertices
{1, 2, ..., k} only?

A.

If k is not in path p, then all vertices of path p are from the set {1, 2,
.y k-1}

If k is in path p, then there is a shortest path from x to k using only
vertices from the set {1, 2, ..., k-1}

If k is in path p, then there is a shortest path from k to y using only
vertices from the set {1, 2, ..., k-1}

. All of the above

None of the above

11/11/2018

k is not in the path

kisin the path

Optimal substructure

Let DX[x, y] be the weight of the shortest path from x to y using vertices {1, 2, ..., k}

When k = 0, no intermediate vertices are used, so D[, y] = W[X, y]

When k>0
o If kis in the shortest path from x to y, then Dk[x, y] = D¥1[x, k] + D[k, y]

o If k is not in the shortest path from x to y, then DX[x, y] = D¥[x, y]

Recursive definition:
DX [x, y] = Wix,y] if k=0
Y= Y min(D*1[x, y], D*1[x, k] + D*"1[k,y]) if k > 0

11/11/2018

Compute D¥using “bottom up” approach
Compute DO=W

Compute D! using D°

Compute DN using DN1

Return DN

FLOYD-WARSHALL (W)
N = W.rows
DO =W
for k =1 to N

for x =1 to N
for y =1 to N

D*[x,y] = min(D*'[x,y], D¥![x,k]+D*'[k,y])

1

2

3

4 D is an N x N matrix
5

6

7

8 Return DV

Complexity:

11/11/2018

Reconstructing shortest paths

Modify the algorithm to compute predecessor matrix PN

PN[x, y] = k means that the last edge in the shortest path from x to y is (k, y)

Floyd-Warshall algorithm has the following line for computing
the shortest path distance between vertices x and y:

D*[x,y] = min(D*![x,y], D*'[x,k]+D*[k,y])
We want to compute predecessor matrix P. When k = 0, then Pk
[x, y]=x, if (x, y) is an edge. Otherwise P [x, y] = NULL. How can
we calculate P¥[x, y] when k > 0?

A. Pl[x,y] if D*'[x,y] < D**'[x,k]+D**'[k,y])
B. Px1[k,y] if D¥*![x,k]+D*'[k,y] < D*¥![x,y]
C. P*1[x,k] if D*'[x,k]+D*'[k,y] < D*![x,y]
D.A and B
E.A and C

11/11/2018

— NN =

—ZZ
==

= N

PO=

O N AN O

O N — O

K=0,D°

Example

— NN =
— - =
— = e

= N T

p1=

O M N

- Mo

N O M

6 3 2 0

S N

-
o
-
1
v

NN N =
— - =
— =

= N MmN

P2 =

mn o

— oo

NOo oM

5 3 2 0

S N

K=2,D?

MmN =
— - =
— =

= NN m

P3 =

MmN N

— oo

NO oM

3 3 2 0

S N

K=3,D3

— =

1

1

N
3 4 4 N

N
2

Pi=
3

0 2 1 3
2 0 3 3
1 3 0 2
3 3 2 0

K=4,D*

