
Evolutionary Algorithms

CSCI 3100

Initializing candidate solutions

Need to select how to represent each solution

Representation depends on the problem

Example problems:

- Minimize/maximize a function $f(x_1, x_2, ..., x_n)$, where $x_i \in \mathbb{R}$
- TSP: Minimize the weight of the cycle that visits every vertex in a graph
- 3-SAT: maximize the number of clauses that are satisfied

In either case, a candidate solution is a vector of values (real numbers, vertex indices, boolean values).

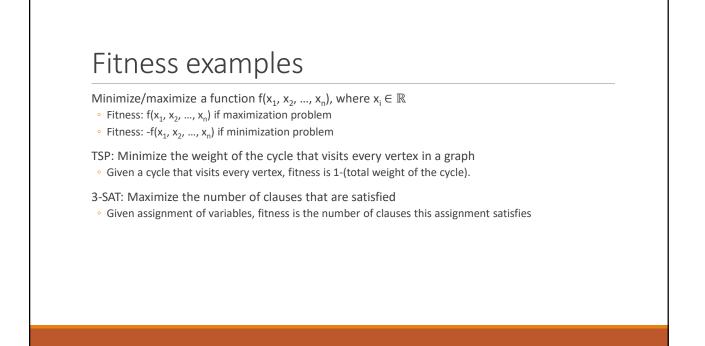
Initialize a "population" of candidate solutions using

- Random number generator
- Non-random strategy

How many candidate solutions should we generate?

• Parameter of the algorithm.

Suppose we are solving the following 3-SAT problem:


 $(x_1 + x_2 + x_3')^{(x_1' + x_2 + x_4)^{(x_1 + x_3' + x_4')^{(x_2 + x_3' + x_4)}}$

We can represent a solution as a vector of 4 booleans. What does the following candidate solution [0, 1, 1, 0] mean?

- A. x_1 =false, x_2 =true, x_3 =true, x_4 =false
- **B.** x_1 =true, x_2 =false, x_3 =false, x_4 =true
- C. x_1 =false, x_2 =true, x_3' =true, x_4 = false
- D. $(x_1+x_2+x_3')$ is false $(x_1'+x_2+x_4)$ is true $(x_1+x_3'+x_4')$ is true $(x_2+x_3'+x_4)$ is false

Evaluate Fitness

Fitness – a measure of the solution quality High fitness – good solution, low fitness – bad solution We don't know what the optimal fitness is How can we tell if the fitness of a candidate solution is "high" or "low"? Compare the fitness of all candidate solutions Fitness is a relative measure

Suppose we are solving the following 3-SAT problem: $(x_1+x_2+x_3')^{(x_1'+x_2+x_4)^{(x_1+x_3'+x_4')^{(x_2+x_3'+x_4)}}$	
Fitness of the candidate solution S is the number of clauses S satisfies. What is the fitness of S=[1,0,1,0]?	
A. 1	
B. 2	
C. 3	
D. 4	
E. 5	

Creating new solutions

Random solutions are not very good

Evolutionary concept - survival of the fittest

Evolutionary pressure

- · Solutions with higher fitness are used as the starting point of new solutions
- Solutions with higher fitness are more likely to survive

Select Parents

Use fitness to determine which candidate solutions will be the starting point for new solutions

Fitness proportional selection

• Probability of S_i getting selected is $\frac{f(S_i)}{\sum_{j=1}^{N} f(S_j)}$

Tournament selection

- Select k individuals from the population at random
- The best individual in this group "wins" the tournament with probability p
- $\,\circ\,$ The second best individual "wins" the tournament with probability p*(1-p)
- The third best individual "wins" the tournament with probability p*(1-p)²
- p is a parameter of an algorithm

Rank selection

- Rank all individuals according to their fitness
- Probability of an individual getting selected is proportional to its rank

We have 4 solutions with fitness values: 90, 5, 3, 2. Charts below represent probability of each individual being selected using two different selection methods. Which chart represents rank selection? A B

Reproduction: Recombination + Mutation

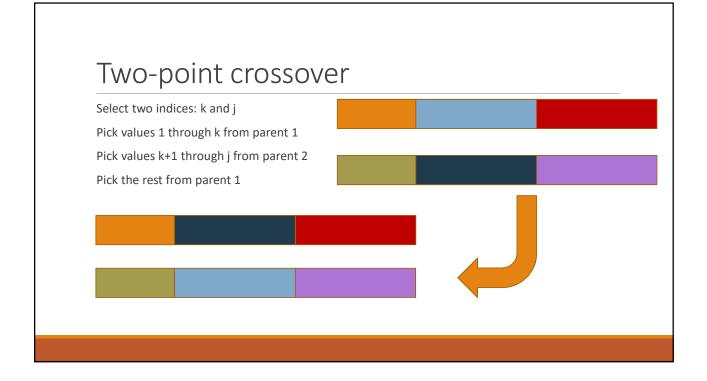
Recombination

Crossover – take one part of the solution from parent 1 and another part from parent 2

One point crossover:

- Select an index into a solution vector: k
- $\circ~$ Copy values 1 through k from parent 1, copy the rest of the values from parent 2
- Copy values 1 through k from parent 2, copy the rest of the values from parent 1

Example:


- Maximize function f(x1, x2, x3, x4)
- Parent 1 = [3.2, 1, 4, 2]
- Parent 2 = [5, 1.2, 2.3, 1]
- Select k = 3
- Offspring 1 = [3.2, 1, 4, 1] Offspring 2 = [5, 1.2, 2.3, 2]

Suppose we have the following two solutions participating in crossover:

[0, 1, 1, 1] and [1, 0, 1, 0]. Our crossover point k is 2. What are the two offspring produced by this crossover?

- A. [0, 1, 1, 1] and [1, 0, 1, 0]
- B. [0, 0, 0, 0] and [1, 1, 1, 1]
- C. [0, 1, 1, 0] and [1, 0, 1, 1]
- D. [0, 1, 1, 0] and [1, 1, 1, 0]

E. Need to know what problem this is solving to determine the answer.

Mutation

Each new solution can be randomly "mutated" with probability $\ensuremath{p_{\text{m}}}$

Parameter of the algorithm

Mutation - randomly changing a value in the solution vector

Examples:

- 3-SAT: randomly select a value to "flip" (if value was 0, make it 1; if value was 1, make it 0)
- $\,\circ\,$ TSP: randomly swap a pair of vertices in a solution vector.

Generic Evolutionary Algorithm

EVA	TIALISE population with random candidate solutions; ALUATE each candidate;
	EAT UNTIL (TERMINATION CONDITION is satisfied) DO
	SELECT parents;
	RECOMBINE pairs of parents;
3	MUTATE the resulting offspring;
	EVALUATE new candidates;
5	SELECT individuals for the next generation;
OD	
END	
5 OD	

What do you think is the most time consuming step of the loop?

A. 1

B. 2

- C. 3
- D. 4
- E. 5