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CSCI 3100
DIVIDE AND CONQUER: MERGE SORT

Divide-and-Conquer

Divide the problem into a number of sub-problems

◦ Similar sub-problems of smaller size

Conquer the sub-problems

◦ Solve the sub-problems recursively

◦ Sub-problem size small enough  solve the problems in straightforward 

manner

Combine the solutions of the sub-problems

◦ Obtain the solution for the original problem
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Merge Sort Approach

To sort an array    A[p . . r]:

Divide
◦ Divide the n-element sequence to be sorted into two subsequences of 

n/2 elements each

Conquer
◦ Sort the subsequences recursively using merge sort

◦ When the size of the sequences is 1 there is nothing more to do

Combine
◦ Merge the two sorted subsequences

Merge Sort

Alg.: MERGE-SORT(A, p, r)

if p < r  Check for base case

then q ← (p + r)/2  Divide

MERGE-SORT(A, p, q)  Conquer

MERGE-SORT(A, q + 1, r)  Conquer

MERGE(A, p, q, r)  Combine

Initial call: MERGE-SORT(A, 1, n)

1 2 3 4 5 6 7 8

62317425

p rq
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Example – n Power of 2
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Divide

Example – n Power of 2
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Example – n not a Power of 2
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Example – n Not a Power of 2
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Merging

Input: 

Array A and indices p, q, r such that p ≤ q < r
◦ Subarrays A[p . . q] and A[q + 1 . . r] are sorted

Output:  One single sorted subarray A[p . . r]

9

1 2 3 4 5 6 7 8

63217542

p rq

Merging

Strategy:

Two piles of sorted cards
◦ Choose the smaller of the two top cards

◦ Remove it and place it in the output pile

Repeat the process until one pile is empty

Take the remaining input pile and place it face-down onto the 
output pile

10

1 2 3 4 5 6 7 8

63217542

p rq

A1 A[p, q]                      

A2 A[q+1, r]                      

A[p, r]                      
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Try it yourself

Merge - Pseudocode
Alg.: MERGE(A, p, q, r)
1. Compute n1 and n2

2. Copy the first n1 elements into L[1 . . n1 + 1]
and  the next n2 elements into R[1 . . n2 + 1]

3.L[n1 + 1] ← ; R[n2 + 1] ← 

4. i← 1;    j ← 1
5. for k ← p to r
6. do if L[ i ] ≤ R[ j ]
7. then A[k] ← L[ i ]
8. i←i + 1
9. else A[k] ← R[ j ]
10. j ← j + 1

p q

7542

6321

rq + 1

L

R





1 2 3 4 5 6 7 8

63217542

p rq

n1 n2
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Running Time of Merge

Initialization (copying into temporary arrays):   

(n1 + n2) = (n)

Adding the elements to the final array:
◦ n iterations, each taking constant time (n)

Total time for Merge:     (n)

Analyzing Divide-and Conquer Algorithms

The recurrence is based on the three steps of the paradigm:

◦ T(n) – running time on a problem of size n
◦ Divide the problem into a subproblems, each of size n/b: takes D(n)
◦ Conquer (solve) the subproblems aT(n/b)
◦ Combine the solutions C(n)

(1) if n ≤ c
T(n) = aT(n/b) + D(n) + C(n) otherwise
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MERGE-SORT Running Time

Divide: 
◦ compute q as the average of p and r: D(n) = (1)

Conquer: 
◦ recursively solve 2 subproblems, 

each of size n/2  2T (n/2)

Combine: 
◦ MERGE on an n-element subarray takes (n) time  C(n) = (n)

(1) if n =1
T(n) = 2T(n/2) + (n) if n > 1

Solve the Recurrence ࢀ  = ቐ
 ࢌ ࢉ = 

ࢀ



+  ࢌ ࢉ > 

Use Master Theorem: with a = 2, b = 2, f(n)=cn

If f(n) is Then T(n) is

ܱ(݊ ି க) Θ(݊)

Θ(݊) Θ(݊ ∗ lg (݊))

Ω(݊ା க) Θ(݂ ݊ )
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Notes on Merge Sort

Running time insensitive of the input

Advantage:
◦ Guaranteed to run in (nlgn)

Disadvantage:
◦ Requires extra space N

17

Sorting Algorithms’ 
Complexities

Insertion sort

Solution type Incremental

Sorts in place Yes

Best case (n)
Worst case (n2)

Bubble sort

Solution type Incremental

Sorts in place Yes

Best case (n)
Worst case (n2)

Selection sort

Solution type Incremental

Sorts in place Yes

Best case (n)
Worst case (n2)

Merge sort

Solution type Divide and 
Conquer

Sorts in place No

Best case (nlgn)
Worst case (nlgn)
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Sorting Challenge 1

Problem: 
Sort a huge randomly-ordered file of small records

Example:   transaction record for a phone company

Which method to use?
A. bubble sort
B. selection sort
C. merge sort, guaranteed to run in time nlg(n)
D. insertion sort

Sorting Huge, Randomly - Ordered Files

Selection sort?
◦ NO, always takes quadratic time

Bubble sort?
◦ NO, quadratic time for randomly-ordered keys

Insertion sort?
◦ NO, quadratic time for randomly-ordered keys

Mergesort?
◦ YES, it is designed for this problem
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Sorting Challenge II

Problem:  sort a file that is already almost in order
Applications:

◦ Re-sort a huge database after a few changes
◦ Double check that someone else sorted a file

Which sorting method to use?
A. Mergesort, guaranteed to run in time nlg(n)
B. Selection sort
C. Bubble sort
D. A custom algorithm for almost in-order files
E. Insertion sort

21

Sorting files that are almost in order

Selection sort?
◦ NO, always takes quadratic time

Bubble sort?
◦ NO, bad for some definitions of “almost in order”
◦ Ex: B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

Insertion sort?
◦ YES, takes linear time for most definitions of “almost in order”

Mergesort or custom method?
◦ Probably not:  insertion sort simpler and faster


