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Dynamic Programming
Longest Common
Subsequence

CSCI 3100

But first ...

https://visualgo.net/bn/sorting

Follow up on the “sorting challenge” from last class
Which algorithm should we use to sort an “almost in order” array
Narrowed down to two options:

> Selection sort
° Merge sort




Dynamic Programming

An algorithm design technique similar to divide and conquer but unlike divide&conquer,
subproblems may overlap in this case.

Divide and conquer
° Partition the problem into subproblems (may overlap)
> Solve the subproblems recursively
> Combine the solutions to solve the original problem
Used for optimization problems

> Goal: find an optimal solution (minimum or maximum)

> There may be many solutions that lead to an optimal value

Dynamic Programming

Applicable when subproblems are not independent

= Subproblems share subsubproblems

n n—1 n—1
e.g.. Combinations: k B k + k-1
)
=n
1

= Dynamic programming solves every subproblem and stores the answer in a table
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Example: Combinations
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Dynamic Programming Algorithm

Characterize the structure of an optimal solution

Recursively define the value of an optimal solution
> An optimal solution to a problem contains within it an optimal solution to subproblems.

> Typically, the recursion tree contains many overlapping subproblems

Compute the value of an optimal solution in a bottom-up fashion
> Optimal solution to the entire problem is build in a bottom-up manner from optimal solutions to
subproblems

Construct an optimal solution from computed information
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Longest Common Subsequence

Given two sequences

X = (Xq, Xg, wey Xp)
Y = <Y1I y2; ey Yn>
find a maximum length common subsequence (LCS) of X and Y

eg: If X=(A B,CB,D,A,B)

Subsequences of X:
A subset of elements in the sequence taken in order

(A,B,D),(B,C,D,B),(B,CD,A,B) etc.

Example

X=(A,B,CB, DA B X=(AB,CB,D,A,B)
Y=(B,D,C,A,B,A) Y=(B,D,C,A,B,A)

(B,C,B,A)and (B, D, A, B) are
longest common subsequences of Xand Y (length = 4)

(B, C, A), however, is not a LCS of Xand Y
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Applications of LCS

Molecular biology
> DNA sequences represented as combinations of letters ACGT

> Find how similar two sequences are

File comparison:
o Linux ‘diff” command to compare two files

Brute-Force Solution

For every subsequence of X, check whether it’s a subsequence of Y
> There are 2™ subsequences of X to check

Each subsequence takes ®(h) time to check
o scan Y for first letter, from there scan for second, and so on

Running time: ©(n2™)
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Making the choice

X=(A, B, D, G,

Y=(z,B,D

Choice: include one element into the common sequence (E) and solve the resulting subproblem

X=(A, B, D, G)

Y=(z,B, D)

Choice: exclude an element from a string and solve the resulting subproblem

Notations

Given a sequence X = (X, Xy, «.., Xp)

we define the i-th prefix of X, fori=0,1, 2, .., m
Xi = (Xq, Xgp ey Xp)

c[i, j]=thelength of a LCS of the sequences
X; =Xy, X, oy X)) ANA Y =(Yg, Vg, o V)




A Recursive Solution

Case 1: x; = y;

eg: X=(AB,D,G,
Y,=(Z,8,D

cli, jl=cli-1,j-1]+1

° Append x; =y, to the LCS of X ; and Y, ;
° Must find a LCS of X;; and Y}

A Recursive Solution

Case 2: x #Yy,

eg.: X;=(A, B, D, G)
Y;=(z,B,D)
o Must solve two problems

o find a LCS of X, and Vi Xig= (A, B, D) and Y= (Z,B,D)
> find a LCS of X, and Yoo %= (A, B, D, G)and Y, = (Z,B)

cli, j1=max { c[i-1,j], c[i, j-11}

Optimal solution to a problem includes optimal solutions to subproblems

9/16/2018
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Overlapping Subproblems

To find a LCS of (X,,andY,)
> we may need to find the LCS between X, and Y, ; and thatof X,,andY,

Subproblems share subsubproblems

> Both of the above subproblems has the subproblem of finding the LCS of (X,,,and Y,,)

Computing the Length of the LCS

0 ifi=Oorj=0
cli, j1= cli-1, j-11+1 if x; =y
max(c[i, j-1], c[i-1, j1) if x; = Yj : )
Yi Y2
0 x 010

VVO;<=

n
X
n
olo|lo|lo|lo|olko

first

second




Additional Information

0 ifi=0orj=0
cli, j1X c[i-1, j-1]1+1 if x; = Yj
max(c[i, j-11, c[i-1, j]) if x; =y,

A matrix b[i, jI:

0 2 3 n R
bé&c: e For a subproblem [i, j] it tells
Yi ¢ D F us what choice was made to
0 x |0 0|0 0 obtain the optimal value
1 AloQ
o If X. = V.
2 B L i=Yj
0 - C[I-].,J] . b[‘, J] = w V\u
3¢|0 e b e Else, if c[i-1,j]2c[i, j-1]
0 b[i, j]=" 1"
mp 0 else
J- bli, 1= « "
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Example

0 ifi=Oorj=0
cli, j1=9 cli-1, j-1]1+1 if x; = Yj
max(c[i, j-11, c[i-1, j]) if x; =y,

X=(A,B,C, B,D,A,B)
Y=(B,D,C,A,B,A)

If X; = y;
bli, j1= “'\”

elseif c[i-1,j]2c[i, j-1]
b[‘, J] = w T "

else

b[il j] - “ e n

N o oA W N~ O

X
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0 1 2 3 4 5 6
Yj B D C A B A
0 0 0 0 0 0 0
AN AN
0 8 8 8 1 |«1 | 1
N RS
0 1 |1 |1 1 2 |«2
T T
0 1 1 2 | «2 2 2
= 1 TN
0 1 1 2 2 3 |3
T T 1017 T 17
0 1 2 2 2 3 3
1 T T T
0 1 2 2 3 3 4
N T 17 TN 1
0 1 2 2 3 4 4
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Constructing a LCS

0 1 2 3 4 5 6

Start at b[m, n] and follow the arrows yy B D C A B A
When we encounter a Ninb[i, jJ=x=y; 0 Xl o | o0 |o0 o|lo|lo]| o
is an element of the LCS 1 A @ 8 8 8 \1 o1 \1
2 Blo \(D LD 1 1152 e

s clo| i1l bl

a8lo ™| 153 3)|ea

5 0|o | 1| 2| 2]3 |33
6 alo| 13133 [T
7 Bl o \1 g g g \4 (X‘b

LCS-LENGTH(X, Y, m, n)

1. fori—1ltom

2 doc[i,0] 0 If one of the sequences is empty, the
3. forj<—Oton length of the LCS is zero

4. doc[0,j]—0

5. fori—1ltom

6 doforj« lton

7
8
9

doifx;=y,
thencli, jl—c[i-1,j-1]+1 } Casel: x =y,

. bli, j 1 "\"
10. elseifcfi-1, j1>c[i, j-1]
11. thencli, jl—c[i-1,j]
12. b[i, j] < "1" .
13, else c[i, J'J] i j-1] [ CBeE N,
14, b[i, j]« "«"
15. return cand b Running time:

10
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PRINT-LCS(b, X, i, j)

ifi=Oorj=0

then return

if b[i, j1= "\

then PRINT-LCS(b, X, i -1, j-1)

print X;

elseif b[i, j]="1"
then PRINT-LCS(b, X, i - 1, j)
else PRINT-LCS(b, X, i, j - 1)

O N O U kB W NR

Initial call:  PRINT-LCS(b, X, length[X], length[Y]) Running time:

Improving the Code

What can we say about how each entry c[i, j]is computed?
o It dependsonlyoncli-1, j- 1], c[i- 1, j],and c[i, j - 1]
> Eliminate table b and compute in O(1) which of the three values was used to compute c[i, j]

> We save ®(mn) space from table b
> However, we do not asymptotically decrease the auxiliary space requirements: still need table ¢

If we only need the length of the LCS
o LCS-LENGTH works only on two rows of c at a time
> The row being computed and the previous row

> We can reduce the asymptotic space requirements by storing only these two rows
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