9/16/2018

Dynamic Programming
Longest Common
Subsequence

CSCI 3100

But first ...

https://visualgo.net/bn/sorting

Follow up on the “sorting challenge” from last class
Which algorithm should we use to sort an “almost in order” array
Narrowed down to two options:

> Selection sort
° Merge sort

Dynamic Programming

An algorithm design technique similar to divide and conquer but unlike divide&conquer,
subproblems may overlap in this case.

Divide and conquer
° Partition the problem into subproblems (may overlap)
> Solve the subproblems recursively
> Combine the solutions to solve the original problem
Used for optimization problems

> Goal: find an optimal solution (minimum or maximum)

> There may be many solutions that lead to an optimal value

Dynamic Programming

Applicable when subproblems are not independent

= Subproblems share subsubproblems

n n—1 n—1
e.g.. Combinations: k B k + k-1
)
=n
1

= Dynamic programming solves every subproblem and stores the answer in a table

9/16/2018

9/16/2018

Example: Combinations

n n—1 n—1

= +
k k k-1

n n
=n =1
n Comb (6,4)
Comb (5, 3) Comb (5, 4)
Comb (4,2) Comb (4, 3) Comb (4, 3) Comb (4, 4)
Comb (3, 1) Comb (3, 2) Comb (3, 2) Comb (3, 3) Comb (3, 2) comb(3,3) AN

e e
s COmb(z.n\c%mb(z,Z) Comb (2, ”\Cc,‘mb(z.Z) BT mmma R
3 2] 2 il 1] 2]]]

Dynamic Programming Algorithm

Characterize the structure of an optimal solution

Recursively define the value of an optimal solution
> An optimal solution to a problem contains within it an optimal solution to subproblems.

> Typically, the recursion tree contains many overlapping subproblems

Compute the value of an optimal solution in a bottom-up fashion
> Optimal solution to the entire problem is build in a bottom-up manner from optimal solutions to
subproblems

Construct an optimal solution from computed information

9/16/2018

Longest Common Subsequence

Given two sequences

X = (Xq, Xg, wey Xp)
Y = <Y1I y2; ey Yn>
find a maximum length common subsequence (LCS) of X and Y

eg: If X=(A B,CB,D,A,B)

Subsequences of X:
A subset of elements in the sequence taken in order

(A,B,D),(B,C,D,B),(B,CD,A,B) etc.

Example

X=(A,B,CB, DA B X=(AB,CB,D,A,B)
Y=(B,D,C,A,B,A) Y=(B,D,C,A,B,A)

(B,C,B,A)and (B, D, A, B) are
longest common subsequences of Xand Y (length = 4)

(B, C, A), however, is not a LCS of Xand Y

9/16/2018

Applications of LCS

Molecular biology
> DNA sequences represented as combinations of letters ACGT

> Find how similar two sequences are

File comparison:
o Linux ‘diff” command to compare two files

Brute-Force Solution

For every subsequence of X, check whether it’s a subsequence of Y
> There are 2™ subsequences of X to check

Each subsequence takes ®(h) time to check
o scan Y for first letter, from there scan for second, and so on

Running time: ©(n2™)

9/16/2018

Making the choice

X=(A, B, D, G,

Y=(z,B,D

Choice: include one element into the common sequence (E) and solve the resulting subproblem

X=(A, B, D, G)

Y=(z,B, D)

Choice: exclude an element from a string and solve the resulting subproblem

Notations

Given a sequence X = (X, Xy, «.., Xp)

we define the i-th prefix of X, fori=0,1, 2, .., m
Xi = (Xq, Xgp ey Xp)

c[i, j]=thelength of a LCS of the sequences
X; =Xy, X, oy X)) ANA Y =(Yg, Vg, o V)

A Recursive Solution

Case 1: x; = y;

eg: X=(AB,D,G,
Y,=(Z,8,D

cli, jl=cli-1,j-1]+1

° Append x; =y, to the LCS of X ; and Y, ;
° Must find a LCS of X;; and Y}

A Recursive Solution

Case 2: x #Yy,

eg.: X;=(A, B, D, G)
Y;=(z,B,D)
o Must solve two problems

o find a LCS of X, and Vi Xig= (A, B, D) and Y= (Z,B,D)
> find a LCS of X, and Yoo %= (A, B, D, G)and Y, = (Z,B)

cli, j1=max { c[i-1,j], c[i, j-11}

Optimal solution to a problem includes optimal solutions to subproblems

9/16/2018

9/16/2018

Overlapping Subproblems

To find a LCS of (X,,andY,)
> we may need to find the LCS between X, and Y, ; and thatof X,,andY,

Subproblems share subsubproblems

> Both of the above subproblems has the subproblem of finding the LCS of (X,,,and Y,,)

Computing the Length of the LCS

0 ifi=Oorj=0
cli, j1= cli-1, j-11+1 if x; =y
max(c[i, j-1], c[i-1, j1) if x; = Yj :)
Yi Y2
0 x 010

VVO;<=

n
X
n
olo|lo|lo|lo|olko

first

second

Additional Information

0 ifi=0orj=0
cli, j1X c[i-1, j-1]1+1 if x; = Yj
max(c[i, j-11, c[i-1, j]) if x; =y,

A matrix b[i, jI:

0 2 3 n R
bé&c: e For a subproblem [i, j] it tells
Yi ¢ D F us what choice was made to
0 x |0 0|0 0 obtain the optimal value
1 AloQ
o If X. = V.
2 B L i=Yj
0 - C[I-].,J] . b[‘, J] = w V\u
3¢|0 e b e Else, if c[i-1,j]2c[i, j-1]
0 b[i, j]=" 1"
mp 0 else
J- bli, 1= « "

9/16/2018

Example

0 ifi=Oorj=0
cli, j1=9 cli-1, j-1]1+1 if x; = Yj
max(c[i, j-11, c[i-1, j]) if x; =y,

X=(A,B,C, B,D,A,B)
Y=(B,D,C,A,B,A)

If X; = y;
bli, j1= “'\”

elseif c[i-1,j]2c[i, j-1]
b[‘, J] = w T "

else

b[il j] - “ e n

N o oA W N~ O

X

® > OO ©® O W »

0 1 2 3 4 5 6
Yj B D C A B A
0 0 0 0 0 0 0
AN AN
0 8 8 8 1 |«1 | 1
N RS
0 1 |1 |1 1 2 |«2
T T
0 1 1 2 | «2 2 2
= 1 TN
0 1 1 2 2 3 |3
T T 1017 T 17
0 1 2 2 2 3 3
1 T T T
0 1 2 2 3 3 4
N T 17 TN 1
0 1 2 2 3 4 4

9/16/2018

Constructing a LCS

0 1 2 3 4 5 6

Start at b[m, n] and follow the arrows yy B D C A B A
When we encounter a Ninb[i, jJ=x=y; 0 Xl o | o0 |o0 o|lo|lo]| o
is an element of the LCS 1 A @ 8 8 8 \1 o1 \1
2 Blo \(D LD 1 1152 e

s clo| i1l bl

a8lo ™| 153 3)|ea

5 0|o | 1| 2| 2]3 |33
6 alo| 13133 [T
7 Bl o \1 g g g \4 (X‘b

LCS-LENGTH(X, Y, m, n)

1. fori—1ltom

2 doc[i,0] 0 If one of the sequences is empty, the
3. forj<—Oton length of the LCS is zero

4. doc[0,j]—0

5. fori—1ltom

6 doforj« lton

7
8
9

doifx;=y,
thencli, jl—c[i-1,j-1]+1 } Casel: x =y,

. bli, j 1 "\"
10. elseifcfi-1, j1>c[i, j-1]
11. thencli, jl—c[i-1,j]
12. b[i, j] < "1" .
13, else c[i, J'J] i j-1] [CBeE N,
14, b[i, j]« "«"
15. return cand b Running time:

10

9/16/2018

PRINT-LCS(b, X, i, j)

ifi=Oorj=0

then return

if b[i, j1= "\

then PRINT-LCS(b, X, i -1, j-1)

print X;

elseif b[i, j]="1"
then PRINT-LCS(b, X, i - 1, j)
else PRINT-LCS(b, X, i, j - 1)

O N O U kB W NR

Initial call: PRINT-LCS(b, X, length[X], length[Y]) Running time:

Improving the Code

What can we say about how each entry c[i, j]is computed?
o It dependsonlyoncli-1, j- 1], c[i- 1, j],and c[i, j - 1]
> Eliminate table b and compute in O(1) which of the three values was used to compute c[i, j]

> We save ®(mn) space from table b
> However, we do not asymptotically decrease the auxiliary space requirements: still need table ¢

If we only need the length of the LCS
o LCS-LENGTH works only on two rows of c at a time
> The row being computed and the previous row

> We can reduce the asymptotic space requirements by storing only these two rows

11

