
9/16/2018

1

Dynamic Programming
Longest Common
Subsequence
CSCI 3100

But first …
https://visualgo.net/bn/sorting

Follow up on the “sorting challenge” from last class

Which algorithm should we use to sort an “almost in order” array

Narrowed down to two options:
◦ Selection sort
◦ Merge sort

9/16/2018

2

Dynamic Programming
An algorithm design technique similar to divide and conquer but unlike divide&conquer,
subproblems may overlap in this case.

Divide and conquer
◦ Partition the problem into subproblems (may overlap)
◦ Solve the subproblems recursively
◦ Combine the solutions to solve the original problem

Used for optimization problems

◦ Goal: find an optimal solution (minimum or maximum)

◦ There may be many solutions that lead to an optimal value

Dynamic Programming
Applicable when subproblems are not independent

 Subproblems share subsubproblems

e.g.: Combinations:

 Dynamic programming solves every subproblem and stores the answer in a table

1
1

1

11





































 










n

n
n

n

k

n

k

n

k

n

9/16/2018

3

Example: Combinations

+=

=

=

=

=

=

+ +

+ + + +

++ + + + +

+

+

+

+

+ + +

+ + + + + + +

+ +

+

++++++++3

3

Comb (3, 1)

2

Comb (2, 1)

1

Comb (2, 2)

Comb (3, 2)

Comb (4,2)

2

Comb (2, 1)

1

Comb (2, 2)

Comb (3, 2)

1

1

Comb (3, 3)

Comb (4, 3)

Comb (5, 3)

2

Comb (2, 1)

1

Comb (2, 2)

Comb (3, 2)

1

1

Comb (3, 3)

Comb (4, 3)

1

1

1

Comb (4, 4)

Comb (5, 4)

Comb (6,4)

1
1

1

11





































 










n

n
n

n

k

n

k

n

k

n

Dynamic Programming Algorithm
Characterize the structure of an optimal solution

Recursively define the value of an optimal solution
◦ An optimal solution to a problem contains within it an optimal solution to subproblems.
◦ Typically, the recursion tree contains many overlapping subproblems

Compute the value of an optimal solution in a bottom-up fashion
◦ Optimal solution to the entire problem is build in a bottom-up manner from optimal solutions to

subproblems

Construct an optimal solution from computed information

9/16/2018

4

Longest Common Subsequence
Given two sequences

X = x1, x2, …, xm

Y = y1, y2, …, yn

find a maximum length common subsequence (LCS) of X and Y

e.g.: If X = A, B, C, B, D, A, B

Subsequences of X:
A subset of elements in the sequence taken in order

A, B, D, B, C, D, B, B, C, D, A, B etc.

Example

X = A, B, C, B, D, A, B X = A, B, C, B, D, A, B

Y = B, D, C, A, B, A Y = B, D, C, A, B, A

B, C, B, A and B, D, A, B are

longest common subsequences of X and Y (length = 4)

B, C, A, however, is not a LCS of X and Y

8

9/16/2018

5

Applications of LCS
Molecular biology
◦ DNA sequences represented as combinations of letters ACGT
◦ Find how similar two sequences are

File comparison:
◦ Linux ‘diff’ command to compare two files

Brute-Force Solution
For every subsequence of X, check whether it’s a subsequence of Y
◦ There are 2m subsequences of X to check

Each subsequence takes (n) time to check
◦ scan Y for first letter, from there scan for second, and so on

Running time: (n2m)

10

9/16/2018

6

Making the choice
X = A, B, D, G, E

Y = Z, B, D, E

Choice: include one element into the common sequence (E) and solve the resulting subproblem

X = A, B, D, G

Y = Z, B, D

Choice: exclude an element from a string and solve the resulting subproblem

11

Notations

Given a sequence X = x1, x2, …, xm

we define the i-th prefix of X, for i = 0, 1, 2, …, m

Xi = x1, x2, …, xi

c[i, j] = the length of a LCS of the sequences

Xi = x1, x2, …, xi and Yj = y1, y2, …, yj

12

9/16/2018

7

A Recursive Solution
Case 1: xi = yj

e.g.: Xi = A, B, D, G, E

Yj = Z, B, D, E

c[i, j] =c[i - 1, j - 1] + 1

◦ Append xi = yj to the LCS of Xi-1 and Yj-1

◦ Must find a LCS of Xi-1 and Yj-1

A Recursive Solution
Case 2: xi  yj

e.g.: Xi = A, B, D, G

Yj = Z, B, D

◦ Must solve two problems
◦ find a LCS of Xi-1 and Yj: Xi-1 = A, B, D and Yj = Z, B, D

◦ find a LCS of Xi and Yj-1: Xi = A, B, D, G and Yj-1 = Z, B

c[i, j] = max { c[i - 1, j], c[i, j-1] }

Optimal solution to a problem includes optimal solutions to subproblems

14

9/16/2018

8

Overlapping Subproblems

To find a LCS of (Xm and Yn)
◦ we may need to find the LCS between Xm and Yn-1 and that of Xm-1 and Yn

◦ Both of the above subproblems has the subproblem of finding the LCS of (Xm-1 and Yn-1)

Subproblems share subsubproblems

15

Computing the Length of the LCS
0 if i = 0 or j = 0

c[i, j] = c[i-1, j-1] + 1 if xi = yj

max(c[i, j-1], c[i-1, j]) if xi  yj

0 0 0 0 0 0

0

0

0

0

0

yj:

xm

y1 y2 yn

x1

x2

xi:

j

i

0 1 2 n

first

second

0

1

2

m

9/16/2018

9

Additional Information

0 0 0 0 0 0

0

0

0

0

0

yj:

D

A C F

A

B

xi

j

i

0

1

2

3

m

A matrix b[i, j]:

• For a subproblem [i, j] it tells
us what choice was made to
obtain the optimal value

• If xi = yj

b[i, j] = “ ”
• Else, if c[i - 1, j] ≥ c[i, j-1]

b[i, j] = “  ”
else

b[i, j] = “  ”

C

Db & c:

c[i,j-1]

c[i-1,j]

0 if i = 0 or j = 0
c[i, j] = c[i-1, j-1] + 1 if xi = yj

max(c[i, j-1], c[i-1, j]) if xi  yj

0 1 2 3 n

Example
X = A, B, C, B, D, A, B

Y = B, D, C, A, B, A
0 1 2 63 4 5
yj B D AC A B

5

1

2

0

3

4

6

7

D

A

B

xi

C

B

A

B

0 0 00 0 00

0

0

0

0

0

0

0


0


0


0 1 1 1

1 1 1

1 2 2


1


1 2 2


2


2

1

1


2


2 3 3


1 2


2


2


3


3


1


2


3


2 3 4

1

2


2


3 4


4

If xi = yj

b[i, j] = “ ”
else if c[i - 1, j] ≥ c[i, j-1]

b[i, j] = “  ”
else

b[i, j] = “  ”

0 if i = 0 or j = 0
c[i, j] = c[i-1, j-1] + 1 if xi = yj

max(c[i, j-1], c[i-1, j]) if xi  yj

9/16/2018

10

Constructing a LCS
Start at b[m, n] and follow the arrows

When we encounter a “ “ in b[i, j]  xi = yj
is an element of the LCS

0 1 2 63 4 5
yj B D AC A B

5

1

2

0

3

4

6

7

D

A

B

xi

C

B

A

B

0 0 00 0 00

0

0

0

0

0

0

0


0


0


0 1 1 1

1 1 1

1 2 2


1


1 2 2


2


2

1

1


2


2 3 3


1 2


2


2


3


3


1


2


3


2 3 4

1

2


2


3 4


4

LCS-LENGTH(X, Y, m, n)

Running time:

9/16/2018

11

PRINT-LCS(b, X, i, j)
1. if i = 0 or j = 0
2. then return

3. if b[i, j] = “ ”
4. then PRINT-LCS(b, X, i - 1, j - 1)

5. print xi

6. elseif b[i, j] = “↑”
7. then PRINT-LCS(b, X, i - 1, j)

8. else PRINT-LCS(b, X, i, j - 1)

Initial call: PRINT-LCS(b, X, length[X], length[Y]) Running time:

Improving the Code
What can we say about how each entry c[i, j] is computed?

◦ It depends only on c[i -1, j - 1], c[i - 1, j], and c[i, j - 1]
◦ Eliminate table b and compute in O(1) which of the three values was used to compute c[i, j]
◦ We save (mn) space from table b
◦ However, we do not asymptotically decrease the auxiliary space requirements: still need table c

If we only need the length of the LCS

◦ LCS-LENGTH works only on two rows of c at a time

◦ The row being computed and the previous row

◦ We can reduce the asymptotic space requirements by storing only these two rows

22

