Jie Hou

Assistant Professor Department of Computer Science Program of Bioinformatics and Computational Biology School of Science & Engineering Saint Louis University St. Louis, MO 63103-2007 Phone: (+1) 573-864-2105 Email: jie.hou@slu.edu Website: http://cs.slu.edu/~hou

I. Basic Information

Education

Ph.D. in Computer Science, University of Missouri-Columbia, Columbia, MO, USA July 2019 Dissertation title: Improving protein structure prediction by deep learning and computational optimization Ph.D. advisor: Prof. Jianlin Cheng M.A. in Statistics, University of Missouri-Columbia, Columbia, MO, USA May 2014 B.S. in Mathematics, Shanghai Maritime University, Shanghai, China July 2012 Experience Assistant Professor, Department of Computer Science August 2019–Present Affiliated Faculty, Program of Bioinformatics and Computational Biology Saint Louis University, St. Louis, MO, USA Assistant Professor, Department of Health and Clinical Outcomes Research (HCOR) May 2024–Present School of Medicine (Secondary Appointment) Saint Louis University, St. Louis, MO, USA Research Assistant, Department of Computer Science August 2014–July 2019 University of Missouri, Columbia, MO, USA

Honors and Awards

- 2024, Received School of Science & Engineering Faculty and Staff Excellence in Teaching Award, Saint Louis University
- 2019, Received Outstanding PhD Student Award in the College of Engineering, University of Missouri

II. Research

Research Interests

General Areas: Machine learning, data mining, deep learning, bioinformatics

Specific Areas: Protein/RNA structure prediction, protein quality assessment, next-generation sequencing data analysis, explainable and trustworthy artificial intelligence (AI)

Funding

Statistics of Funding Impact

- Received a research grant with \$467K as PI from National Institutes of Health (NIH/NIGMS)
- Secured \$2.1M research grants from NSF and NIH/NHLBI as Co-PI/Co-I (my total share: \$336K).

Awarded Grants

•

- 1. NIH/NIGMS, R15 (PI), "Improving Artificial Intelligence Readiness of RNA Motif Data for Structure Analysis and Modeling," 09/2024 08/2027, Total amount: \$467,334.
 - <u>Major Goals</u>: The project aims to enhance computational RNA structural analysis by integrating artificial intelligence (AI) and developing a comprehensive RNA data generation framework tailored for AI applications.
- 2. NIH/NHLBI, R01 (co-I), "Pharmacogenetic Refinement of the Warfarin Dose Using Machine Learning," 07/2024 – 06/2028, Total amount: \$1,554,645, my share: \$210,303. PI - Dr. Gage Brian.
 - <u>Major Goals</u>: The project aims to improve the safety and effectiveness of anticoagulant therapy. We will use penalized regression and machine learning to develop algorithms to guide warfarin dosing. To facilitate use of the algorithms, we will integrate them into a popular electronic health record (Epic) and make them publicly available at our non-profit web application, www.WarfarinDosing.org
 - <u>Scope of work</u>: Dr. Hou will lead the development of advanced machine learning framework to quantify the warfarin dose-response relationship in long-term period; Algorithm validation and deployment via their electronic medical record, Epic.
 - Efforts: Dr. Hou will commit two summer months per year in research activities and student supervision in academic terms.
- 3. National Science Foundation (NSF) (co-PI), "CC* Compute-Campus: Modernizing Campus Cyberinfrastructure for AI-Enhanced Research and Education (ModernCARE)," 11/2024 – 10/2026, Total amount: \$630,000, my share: \$126,000. PI - Dr. Ted Ahn.
 - <u>Major Goals</u>: This project aims to enhance SLU's campus computing infrastructure equipment (a brand-new, small-scale, university-wide, GPU-based cluster) to support advanced AI-driven research and educational activities that will benefit our faculty, students, and broader scientific community.
 - <u>Scope of work</u>: Dr. Hou will support HPC training workshops and seminars, lead the sub-session for the bioinformatics and AI, and validate the new system on the AI-driven molecular structure prediction. Dr. Hou will also incorporate this environment in the development of new machine learning and bioinformatics courses.
 - Efforts: Dr. Hou will commit 0.3 summer months per year in research activities and student supervision in academic terms.
- 4. SLU Institute for Drug and Biotherapeutic Innovation (IDBI) Seed Grant Internal Initiative (Senior personnel), "Ab Initio Antibiotic Development", 10/2024 09/2025. Total amount: \$10,000. PI Dr. John Tavis.
 - <u>Major Goals</u>: The project will leverage the advances in AI-driven ab initio compound design algorithms to design novel antibiotics against the ESKAPE pathogens.
 - <u>Scope of work</u>: Dr. Hou will apply antibiotic prediction algorithms on compiled antiboitic screening data, and select high-scoring compounds per bacteria for synthesis.
 - Efforts: Student supervision on computational analysis.
- SLU Scholarly Undergraduate Research Grants and Experiences (SURGE) Program, Saint Louis University (PI), "Automated RNA Motif Structure Parsing Framework for AI/ML applications", 08/2024 – 12/2024. Total amount: \$2,000.

- SLU President's Research Funds (PRF), Saint Louis University (co-PI), "Privacy Analysis of Distributed Learning with Defensive Measures", 05/2022–04/2023. Total amount: \$25,000. PI - Dr. Reza Tourani
- WUSTL Institute of Clinical and Translational Sciences (co-PI), "Pharmacogenetic Refinement of the Warfarin Dose Using Machine Learning", 03/2022–02/2023, Total amount: \$50,000, my share: \$15,000. PI - Dr. Brian Gage
- 8. SLU President's Research Funds (PRF), Saint Louis University (Sole PI), "Advancing Protein Structure Prediction using Small-angle X-ray Scattering data". 05/2021–11/2022. Total amount: \$15,000.

Publications

Statistics of Publication Impact

- 52 Journal Articles Published in 22 International Journals
- Total Journal Impact Factors: +175
- +2900 Citations (estimation according to Google Scholar as of October, 2024: https://scholar .google.com/citations?user=RsC9b_wAAAAJ&hl=en&oi=ao)
- **H-Index: 25** (25 publications each having a citation number >= 25)
- H-Index (since 2019): 25 (25 publications each having a citation number >= 25 since 2019)
- **i10-Index: 44** (44 publications each having >= 10 citations)
- i10-Index (since 2019): 43 (43 publications each having >= 10 citations since 2019)
- 6 Conference Papers, 13 Conference Abstracts/Posters
- 2 Book Chapters

(Underscore - Hou as first-author/co-author, * - Hou as corresponding author)

Refereed Journals by Area

- Molecular structural analysis with AI

- Zhang, L., Zhu, J., Wang, S., Hou, J, Si, D., and Cao, R. (2024). Anglesrefine: refinement of 3d protein structures using transformer based on torsion angles. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*. - Impact factor: 3.6
- Chen, J., Zia, A., Luo, A., Meng, H., Wang, F., <u>Hou, J</u>, Cao, R., and Si, D. (2024). Enhancing cryo-em structure prediction with deeptracer and alphafold2 integration. *Briefings in Bioinformatics*, 25(3):bbae118. - Impact factor (2024): 9.5
- Zhang, L., Wang, S., <u>Hou, J</u>, Si, D., Zhu, J., and Cao, R. (2023). Complexqa: a deep graph learning approach for protein complex structure assessment. *Briefings in Bioinformatics*, 24(6):bbad287. Impact factor (2023): 9.5; Citations (in Google Scholar): 2
- Nakamura, A., Meng, H., Zhao, M., Wang, F., Hou, J, Cao, R., and Si, D. (2023). Fast and automated protein-dna/rna macromolecular complex modeling from cryo-em maps. *Briefings in Bioinformatics*, 24(2):bbac632. Impact factor (2023): 9.5; Citations (in Google Scholar): 5
- Hunt, C., Montgomery, S., Berkenpas, J. W., Sigafoos, N., Oakley, J. C., Espinosa, J., Justice, N., Kishaba, K., Hippe, K., Si, D., et al. (2022). Recent progress of machine learning in gene therapy. *Current Gene Therapy*, 22(2):132–143

- Impact factor (2022): 3.8; Citations (in Google Scholar): 26

- Hippe, K., Lilley, C., William Berkenpas, J., Chandana Pocha, C., Kishaba, K., Ding, H., <u>Hou, J</u>, Si, D., and Cao, R. (2022). Zoomqa: residue-level protein model accuracy estimation with machine learning on sequential and 3d structural features. *Briefings in bioinformatics*, 23(1):bbab384. - Impact factor (2022): 9.5; Citations (in Google Scholar): 7
- Liu, J., Wu, T., Guo, Z., <u>Hou, J</u>, and Cheng, J. (2022). Improving protein tertiary structure prediction by deep learning and distance prediction in casp14. *Proteins: Structure, Function, and Bioinformatics*, 90(1):58–72. - Impact factor (2021): 4.08; Citations (in Google Scholar): 21
- Guo, Z., Wu, T., Liu, J., <u>Hou, J</u>, and Cheng, J. (2021b). Improving deep learning-based protein distance prediction in casp14. *Bioinformatics*, 37(19):3190–3196. Impact factor (2021): 6.93; Citations (in Google Scholar): 9
- Si, D., Nakamura, A., Tang, R., Guan, H., <u>Hou, J</u>, Firozi, A., Cao, R., Hippe, K., and Zhao, M. (2021). Artificial intelligence advances for de novo molecular structure modeling in cryo-electron microscopy. *Wiley Interdisciplinary Reviews: Computational Molecular Science*, page e1542. Impact factor (2021): 11.50; Citations (in Google Scholar): 15
- Chen, X., Liu, J., Guo, Z., Wu, T., <u>Hou, J</u>, and Cheng, J. (2021b). Protein model accuracy estimation empowered by deep learning and inter-residue distance prediction in casp14. *Scientific Reports*, 11(1):1–12. Impact factor (2021): 4.99; Citations (in Google Scholar): 18
- Guo, Z., Hou, J, and Cheng, J. (2021a). Dnss2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures. *Proteins: Structure, Function, and Bioinformatics*, 89(2):207–217. Impact factor (2021): 4.08; Citations (in Google Scholar): 44
- Shi, X., Yang, H., Chen, C., Hou, J, Hanson, K. M., Albert, P. S., Ji, T., Cheng, J., and Birchler, J. A. (2021). Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. *The Plant Cell*, 33(4):917–939. Impact factor (2021): 12.08; Citations (in Google Scholar): 24
- Adhikari, B., Shrestha, B., Bernardini, M., <u>Hou, J.</u>, and Lea, J. (2021). Disteval: A web server for evaluating predicted protein distances. *BMC bioinformatics*, 22(1):1–9. Impact factor (2021): 3.30; Citations (in Google Scholar): 9
- Wu, T., Guo, Z., <u>Hou, J</u>, and Cheng, J. (2021). Deepdist: real-value inter-residue distance prediction with deep residual convolutional network. *BMC bioinformatics*, 22:1–17. Impact factor (2021): 3.307; Citations (in Google Scholar): 63
- Lawson, C. L., Kryshtafovych, A., Adams, P. D., Afonine, P. V., Baker, M. L., Barad, B. A., Bond, P., Burnley, T., Cao, R., Cheng, J., et al. (2021). Cryo-em model validation recommendations based on outcomes of the 2019 emdataresource challenge. *Nature methods*, 18(2):156–164. - Impact factor (2020): 28.547; Citations (in Google Scholar): 74
- Si, D., Moritz, S. A., Pfab, J., Hou, J, Cao, R., Wang, L., Wu, T., and Cheng, J. (2020). Deep learning to predict protein backbone structure from high-resolution cryo-em density maps. *Scientific Reports (Nature Publisher Group)*, 10(1). Impact factor (2020): 4.379; Citations (in Google Scholar): 91
- Wu, T., <u>Hou, J</u>, Adhikari, B., and Cheng, J. (2020). Analysis of several key factors influencing deep learning-based inter-residue contact prediction. *Bioinformatics*, 36(4):1091–1098. - Impact factor (2020): 6.937; Citations (in Google Scholar): 32

- Hou, J, Adhikari, B., Tanner, J. J., and Cheng, J. (2020a). Saxsdom: Modeling multidomain protein structures using small-angle x-ray scattering data. *Proteins: Structure, Function, and Bioinformatics*, 88(6):775–787. - Impact factor (2020): 3.756; Citations (in Google Scholar): 10
- Lensink, M. F., Brysbaert, G., Nadzirin, N., Velankar, S., Chaleil, R. A., Gerguri, T., Bates, P. A., Laine, E., Carbone, A., Grudinin, S., et al. (2019). Blind prediction of homo-and hetero-protein complexes: The casp13-capri experiment. *Proteins: Structure, Function, and Bioinformatics*, 87(12):1200–1221 -Impact factor (2019): 2.828; Citations (in Google Scholar): 117
- Cheng, J., Choe, M.-H., Elofsson, A., Han, K.-S., <u>Hou, J</u>, Maghrabi, A. H., McGuffin, L. J., Menéndez-Hurtado, D., Olechnovič, K., Schwede, T., et al. (2019). Estimation of model accuracy in casp13. *Proteins: Structure, Function, and Bioinformatics*, 87(12):1361–1377 Impact factor (2019): 2.828; Citations (in Google Scholar): 91
- Zhou, N., Jiang, Y., Bergquist, T. R., Lee, A. J., Kacsoh, B. Z., Crocker, A. W., Lewis, K. A., Georghiou, G., Nguyen, H. N., Hamid, M. N., et al. (2019). The cafa challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. *Genome biology*, 20(1):1–23 Impact factor (2019): 10.806; Citations (in Google Scholar): 352
- Hou, J, Wu, T., Cao, R., and Cheng, J. (2019). Protein tertiary structure modeling driven by deep learning and contact distance prediction in casp13. *Proteins: Structure, Function, and Bioinformatics*, 87(12):1165–1178 - Impact factor (2019): 2.828; Citations (in Google Scholar): 159
- Keasar, C., McGuffin, L. J., Wallner, B., Chopra, G., Adhikari, B., Bhattacharya, D., Blake, L., Bortot, L. O., Cao, R., Dhanasekaran, B., et al. (2018). An analysis and evaluation of the wefold collaborative for protein structure prediction and its pipelines in casp11 and casp12. *Scientific reports*, 8(1):1–18. Impact factor (2018): 4.011; Citations (in Google Scholar): 23 (conducted prior to joining SLU)
- Adhikari, B., <u>Hou, J</u>, and Cheng, J. (2018a). Dncon2: improved protein contact prediction using two-level deep convolutional neural networks. *Bioinformatics*, 34(9):1466–1472 Impact factor (2018): 4.51; Citations (in Google Scholar): 179
- 25. Adhikari, B., <u>Hou, J</u>, and Cheng, J. (2018b). Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning. *Proteins: Structure, Function, and Bioinformatics*, 86:84–96 Impact factor (2018): 2.501; Citations (in Google Scholar): 21
- Li, H., Hou, J. Adhikari, B., Lyu, Q., and Cheng, J. (2017). Deep learning methods for protein torsion angle prediction. *BMC bioinformatics*, 18(1):417 Impact factor (2017): 2.213; Citations (in Google Scholar): 63
- Hou, J, Adhikari, B., and Cheng, J. (2018a). Deepsf: deep convolutional neural network for mapping protein sequences to folds. *Bioinformatics*, 34(8):1295–1303 Impact factor (2017): 5.481; Citations (in Google Scholar): 207
- Cao, R., Adhikari, B., Bhattacharya, D., Sun, M., <u>Hou, J</u>, and Cheng, J. (2017). Qacon: single model quality assessment using protein structural and contact information with machine learning techniques. *Bioinformatics*, 33(4):586–588 Impact factor (2017): 5.481; Citations (in Google Scholar): 94
- Adhikari, B., Nowotny, J., Bhattacharya, D., <u>Hou, J</u>, and Cheng, J. (2016). Coneva: a toolbox for comprehensive assessment of protein contacts. *BMC bioinformatics*, 17(1):1–12 Impact factor (2016): 2.448; Citations (in Google Scholar): 27

- Cao, R., Bhattacharya, D., <u>Hou, J</u>, and Cheng, J. (2016). Deepqa: improving the estimation of single protein model quality with deep belief networks. *BMC bioinformatics*, 17(1):495 Impact factor (2016): 2.448; Citations (in Google Scholar): 170
- 31. Jo, T., Hou, J, Eickholt, J., and Cheng, J. (2015b). Improving protein fold recognition by deep learning networks. *Scientific reports*, 5:17573 Impact factor (2015): 5.228; Citations (in Google Scholar): 136

- Genomic Sequencing Analysis

- Si, T., Hopkins, Z., Yanev, J., Hou, J, and Gong, H. (2023). A novel f-divergence based generative adversarial imputation method for scrna-seq data analysis. *Plos one*, 18(11):e0292792. Impact factor (2023): 3.7
- Yang, H., Shi, X., Chen, C., <u>Hou, J</u>, Ji, T., Cheng, J., and Birchler, J. A. (2023). Genomic imbalance modulates transposable element expression in maize. *Plant Communications*, 4(2). Impact factor (2023): 10.5; Citations (in Google Scholar): 2
- 34. Shi, X., Yang, H., Chen, C., Hou, J, Ji, T., Cheng, J., and Birchler, J. A. (2022a). Dosage-sensitive mirnas trigger modulation of gene expression during genomic imbalance in maize. *Nature Communications*, 13(1):3014. Impact factor (2022): 16.6; Citations (in Google Scholar): 3
- Shi, X., Yang, H., Chen, C., <u>Hou, J</u>, Ji, T., Cheng, J., and Birchler, J. A. (2022b). Effect of aneuploidy of a non-essential chromosome on gene expression in maize. *The Plant Journal*, 110(1):193–211. Impact factor (2021): 7.09; Citations (in Google Scholar): 10
- Chen, C., Hou, J., Shi, X., Yang, H., Birchler, J. A., and Cheng, J. (2021a). Deepgrn: prediction of transcription factor binding site across cell-types using attention-based deep neural networks. *BMC bioinformatics*, 22(1):1–18. Impact factor (2021): 3.30; Citations (in Google Scholar): 57
- Blavet, N., Yang, H., Su, H., Solanskỳ, P., Douglas, R. N., Karafiátová, M., Šimková, L., Zhang, J., Liu, Y., <u>Hou, J</u>, et al. (2021). Sequence of the supernumerary b chromosome of maize provides insight into its drive mechanism and evolution. *Proceedings of the National Academy of Sciences*, 118(23). -Impact factor (2021): 12.77; Citations (in Google Scholar): 36
- Shi, X., Yang, H., Chen, C., Hou, J, Hanson, K. M., Albert, P. S., Ji, T., Cheng, J., and Birchler, J. A. (2021). Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. *The Plant Cell*, 33(4):917–939. Impact factor (2021): 12.08; Citations (in Google Scholar): 24
- Yang, H., Shi, X., Chen, C., <u>Hou, J</u>, Ji, T., Cheng, J., and Birchler, J. A. (2021). Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. *The Plant Cell*, 33(4):901–916. - Impact factor (2021): 12.08; Citations (in Google Scholar): 22
- Grunz-Borgmann, E. A., Nicholas, L. A., Spagnoli, S., Trzeciakowski, J. P., Valliyodan, B., <u>Hou, J</u>, Jilong, L., Kerley, M., Fritsche, K., Parrish, A. R., et al. (2020). The renoprotective effects of soy protein in the aging kidney. *Medical Research Archives*, 8(3). Impact factor (2020): 2.235; Citations (in Google Scholar): 5
- Chen, C., <u>Hou, J</u>, Shi, X., Yang, H., Birchler, J. A., and Cheng, J. (2020a). Gnet2: an r package for constructing gene regulatory networks from transcriptomic data. *Bioinformatics*. Impact factor (2020): 6.937; Citations (in Google Scholar): 5

- Chen, C., <u>Hou, J</u>, Tanner, J. J., and Cheng, J. (2020b). Bioinformatics methods for mass spectrometrybased proteomics data analysis. *International Journal of Molecular Sciences*, 21(8):2873. - Impact factor (2020): 5.923; Citations (in Google Scholar): 202
- Jasmer, K. J., <u>Hou, J</u>, Mannino, P., Cheng, J., and Hannink, M. (2020). Heme oxygenase promotes b-raf-dependent melanosphere formation. *Pigment Cell & Melanoma Research*, 33(6):850–868. -Impact factor (2020): 4.693; Citations (in Google Scholar): 10
- Johnson, A. F., Hou, J, Yang, H., Shi, X., Chen, C., Islam, M. S., Ji, T., Cheng, J., and Birchler, J. A. (2020). Magnitude of modulation of gene expression in aneuploid maize depends on the extent of genomic imbalance. *Journal of Genetics and Genomics*. Impact factor (2020): 4.275; Citations (in Google Scholar): 18
- 45. Song, H., Zhou, H., Qu, Z., <u>Hou, J</u>, Chen, W., Cai, W., Cheng, Q., Chuang, D. Y., Chen, S., Li, S., et al. (2019). From analysis of ischemic mouse brain proteome to identification of human serum clusterin as a potential biomarker for severity of acute ischemic stroke. *Translational Stroke Research*, 10(5):546–556 Impact factor (2019): 5.780; Citations (in Google Scholar): 25
- 46. Hou, J, Shi, X., Chen, C., Islam, M. S., Johnson, A. F., Kanno, T., Huettel, B., Yen, M.-R., Hsu, F.-M., Ji, T., et al. (2018b). Global impacts of chromosomal imbalance on gene expression in arabidopsis and other taxa. *Proceedings of the National Academy of Sciences*, 115(48):E11321–E11330 Impact factor (2019): 9.412; Citations (in Google Scholar): 58
- 47. Lei, W., Lu, Y., <u>Hou, J</u>, Chen, C., Browning, J. D., Lubahn, D. B., Cheng, J., Folk, W. R., Sun, G. Y., and Fritsche, K. L. (2018). Rna sequence analysis reveals expected and novel immuno-modulatory activities by sutherlandia frutescens (conducted prior to joining SLU)
- Jiang, L., Wan, Y., Anderson, J. C., <u>Hou, J</u>, Islam, S. M., Cheng, J., and Peck, S. C. (2017). Genetic dissection of arabidopsis map kinase phosphatase 1-dependent pamp-induced transcriptional responses. *Journal of experimental botany*, 68(18):5207–5220 Impact factor (2017): 5.354; Citations (in Google Scholar): 10
- Song, H., Lu, Y., Qu, Z., Mossine, V. V., Martin, M. B., <u>Hou, J</u>, Cui, J., Peculis, B. A., Mawhinney, T. P., Cheng, J., et al. (2016). Effects of aged garlic extract and fruarg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells. *Scientific reports*, 6:35323 - Impact factor (2016): 4.569; Citations (in Google Scholar): 23
- Hou, J, Acharya, L., Zhu, D., and Cheng, J. (2016a). An overview of bioinformatics methods for modeling biological pathways in yeast. *Briefings in functional genomics*, 15(2):95–108 - Impact factor (2016): 4.098; Citations (in Google Scholar): 28
- 51. Lei, W., Lu, Y., <u>Hou, J</u>, Li, J., Browning, J., Eichen, P., Cheng, J., Lubahn, D., Folk, W., Sun, G., et al. (2015). Immunomodulation of innate immune cells by sutherlandia frutescens: A transcriptomic analyses. *The FASEB Journal*, 29(1_supplement):593–3 Impact factor (2016): 5.259
- 52. <u>Hou, J</u>, Stacey, G., and Cheng, J. (2015). Exploring soybean metabolic pathways based on probabilistic graphical model and knowledge-based methods. *EURASIP Journal on Bioinformatics and Systems Biology*, 2015(1):5 Impact factor (2015): NA
- 53. Li, J., <u>Hou, J.</u>, Sun, L., Wilkins, J. M., Lu, Y., Niederhuth, C. E., Merideth, B. R., Mawhinney, T. P., Mossine, V. V., Greenlief, C. M., et al. (2015b). From gigabyte to kilobyte: a bioinformatics protocol for mining large rna-seq transcriptomics data. *PloS one*, 10(4):e0125000 - Impact factor (2015): 3.057; Citations (in Google Scholar): 13

Book Chapters

- 1. <u>Hou, J</u>, Wu, T., Guo, Z., Quadir, F., and Cheng, J. (2020c). The multicom protein structure prediction server empowered by deep learning and contact distance prediction. In *Protein Structure Prediction*, pages 13–26. Springer
- Shi, X., Chen, C., Yang, H., Hou, J, Ji, T., Cheng, J., Veitia, R. A., and Birchler, J. A. (2020). The gene balance hypothesis: Epigenetics and dosage effects in plants. In *Plant Epigenetics and Epigenomics*, pages 161–171. Springer

Refereed Conference Papers

- 1. Saon, M. S., Boehm, K., Hou, I., Yu, J., Znosko, B. M., and Hou, J* (2024). Exploring the efficiency of deep graph neural networks for rna secondary structure prediction. In *International Conference on Intelligent Biology and Medicine (ICIBM 2024), accepted*
- 2. Yan, D., Azad, A., Hou, J, Chen, J. Y., and Zaki, M. J. (2023). 22nd international workshop on data mining in bioinformatics (biokdd 2023). In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 5897–5898. Acceptance rate: NA
- 3. Dougherty, S., Kumar, A., Hou, J, Tourani, R., and Tabakhi, A. M. (2023). A stealthy inference attack on split learning with a split-fuse defensive measure. In *2023 IEEE Conference on Communications and Network Security (CNS)*, pages 1–9. IEEE. Acceptance rate: NA
- Rahbar, M., Chauhan, R. K., Shah, P. N., Cao, R., Si, D., and <u>Hou, J*</u> (2022). Deep graph learning to estimate protein model quality using structural constraints from multiple sequence alignments. In *Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics*, pages 1–10. Acceptance rate: 29%; Citations (in Google Scholar): 1
- 5. Kosfeld, T., McMillan, J., DiPaolo, R. J., <u>Hou, J</u>, and Ahn, T.-H. (2020). Performance evaluation of viral infection diagnosis using t-cell receptor sequence and artificial intelligence. In *Proceedings* of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pages 1–10. Acceptance rate: 29%; Citations (in Google Scholar): 1
- Chen, X., Akhter, N., Guo, Z., Wu, T., Hou, J, Shehu, A., and Cheng, J. (2020c). Deep ranking in template-free protein structure prediction. In *Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics*, pages 1–10. Acceptance rate: 29%; Citations (in Google Scholar): 5

Theses (Hou and his graduated students)

- 1. Omar Al Akkad (2023). Evaluation of Privacy Inference Attack on Deep Recurrent Neural Networks. Master Thesis, Saint Louis University
- 2. Chauhan, Rahul Kumar (2021). A Deep Learning Approach to Estimate Protein Model Quality Using Structural Constraints from Multiple Sequence Alignments. Master Thesis, Saint Louis University
- 3. <u>Hou, J</u> (2019). Improving protein structure prediction by deep learning and computational optimization. *PhD Dissertation*, University of Missouri - Columbia

Conference Abstracts/ Posters

1. <u>Hou, J</u>, Mahdi Rahbar, Sheng Wang, R. C., and Hou, J. (2022). A deep graph learning approach to rank protein-protein interaction structures. *The 14th Critical Intelligent Systems for Molecular Biology* (*ISMB*), 2022

- Hou, J, Guo, Z., Liu, J., Wu, T., and Cheng, J. (2020b). Improving protein single-model and consensus quality assessment using inter-residue distance prediction and deep learning. *The 14th Critical Assessment of Techniques for Protein Structure Prediction (CASP14)*, 2020
- 3. <u>Hou, J</u> and Cheng, J. (2018a). Deep convolutional neural networks for predicting the quality of single protein structural model. *The 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP13)*, Riviera Maya, Mexico, 2018
- 4. <u>Hou, J</u> and Cheng, J. (2018b). Large-scale integration of protein model quality assessment using deep learning and contact predictions. *The 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP13)*, Riviera Maya, Mexico, 2018
- Hou, J and Cheng, J. (2018c). Tertiary structure prediction assisted by saxs data, probabilistic modeling, deep learning, and contact predictions. *The 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP13)*, Riviera Maya, Mexico, 2018
- Hou, J, Wu, T., Cao, R., and Cheng, J. (2018c). Casp13 tertiary structure prediction by the multicom human group. *The 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP13)*, Riviera Maya, Mexico, 2018
- Hou, J, Wu, T., and Cheng, J. (2018d). Improving protein tertiary structure prediction by deep learning, contact prediction and domain recognition. *The 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP13)*, Riviera Maya, Mexico, 2018
- Hou, J, Adhikari, B., Cao, R., and Cheng, J. (2016b). Saxs-assisted tertiary structure prediction by multicom. *The 12th Critical Assessment of Techniques for Protein Structure Prediction (CASP12)*, Gaeta, Italy, 2016
- Hou, J, Adhikari, B., Cao, R., Crivelli, S. N., and Cheng, J. (2016c). Tertiary structure prediction by wfall-cheng. *The 12th Critical Assessment of Techniques for Protein Structure Prediction (CASP12)*, Gaeta, Italy, 2016
- 10. <u>Hou, J</u>, Li, J., Adhikari, B., and Cheng, J. (2016d). Improved integration of template-based and template-free model sampling methods for protein structure prediction. *The 12th Critical Assessment of Techniques for Protein Structure Prediction (CASP12)*, Gaeta, Italy, 2016
- Hou, J, Li, J., and Cheng, J. (2016e). Protein tertiary structure prediction by multicom-cluster server. <u>The 12th Critical Assessment of Techniques for Protein Structure Prediction (CASP12)</u>, Gaeta, Italy, 2016
- Li, J., <u>Hou, J</u>, Sun, L., Wilkins, J. M., Lu, Y., Niederhuth, C. E., Merideth, B. R., Mawhinney, T. P., Mossine, V. V., Greenlief, C. M., et al. (2015a). From gigabyte to kilobyte: A bioinformatics protocol for mining large rna-seq. *ACM-BCB*, Atlanta, GA, USA, 2015
- Jo, T., Hou, J, Eickholt, J., and Cheng, J. (2015a). Deep learning network for protein fold recognition. *The Mid-South Computational Biology and Bioinformatics Conference (MCBIOS)*, Little Rock, AR, USA, 2015

Selected Talks

1. Workshop talk at 2024 ICIBM conference, Houston, 10/2024 *Talk title:* "Applications of deep learning techniques in molecular structure modeling"

- 2. **Paper presentation at 2024 ICIBM conference**, Houston, 10/2024 *Talk title:* "Exploring the Efficiency of Deep Graph Neural Networks for RNA Secondary Structure Prediction"
- 3. Invited talk at *Barnes-Jewish Hospital, Saint Louis*, 11/2023, 11/2024 *Talk title:* "Machine Learning applications in healthcare"
- 4. Short Research talk at *SLU*, 2023 AI for Medicine conference, 10/2023 *Talk title:* "AI and big data analytics in healthcare data"
- 5. **Department Colloquium talk** at *SLU Computer Science Department Colloquium*, 09/2023 *Talk title:*"The applications of deep learning techniques in protein structure prediction"
- 6. **Paper presentation at 2023 SIGKDD conference, BioKDD workshop**, Long Beach, 08/2023 *Talk title:* "AnglesRefine: refinement of 3D protein structures using Transformer based on torsion angles"
- 7. **Department Colloquium talk** at *SLU Computer Science Department Colloquium*, 10/2022 *Talk title:* "The applications of deep learning techniques in protein structure prediction"
- 8. **Poster presentation at 2022 ISMB conference**, Madison, 07/2022 *Poster title:* "A deep graph learning approach to rank protein-protein interaction structures."
- Invited talk in Data Analysis & Intelligent Systems (DAIS) group, University of Washington, Bothell, WA, 02/2021,
 T. II. citle "University of Second Education for the Systems".

Talk title: "Integration of cryo-EM and inter-residue distance prediction from protein folding",

10. **Department Colloquium talk** in *Parks College Colloquium*, Saint Louis University, St. Louis, MO, US, 09/2020.

Talk title: "DeepRank2: Utilizing computer vision techniques to improve protein model quality assessment using inter-residue distance prediction and deep learning"

- Short Research talk in Department of Biological Sciences Research Retreat, Saint Louis University, St. Louis, MO, US, 09/2019 Talk title: "Protein Structure Prediction using Deep Learning and Computational Optimization"
- Poster presentation at The 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP13), Riviera Maya, Mexico, Dec 2018 *Poster title:* "CASP13 Tertiary Structure Prediction by the MULTICOM Human Group".
- Invited talk at The 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP13), Riviera Maya, Mexico. Dec 2018 *Talk title:* "Large-scale integration of protein model quality assessment using deep learning and contact predictions"
- Paper presentation at 2015 MidSouth Computational Biology and Bioinformatics Society (MCBIOS), Little Rock, Arkansas, US, March 2015 *Talk title:* "Improving protein fold recognition by deep learning networks"

III. Teaching and Advising

Teaching

Statistics of Teaching Impact

- Taught 3 Different Courses in Machine Learning, Algorithms in Computational Biology, Introduction to Computer Science, and 3 General Research Courses
- Co-taught 1 course in Bioinformatics Colloquium
- Average Teaching Evaluation Score from 2019 to 2024:
 - 3.93/4.0 CSCI 1020: Introduction to Computer Science: Bioinformatics
 - 3.90/4.0 (3.97/4.0 since 2022) CSCI 4750/5750: Introduction to Machine Learning
 - 3.98/4.0 BCB 5300: Algorithms in Computational Biology

Courses Designed and Taught (5)

- 1. CSCI 1020: Introduction to Computer Science: Bioinformatics (Fall 2019, Spring 2020, Fall 2020, Spring 2021, Spring 2023)
- 2. CSCI 4750/5750: Introduction to Machine Learning (Spring 2020, Fall 2020, Fall 2021, Spring 2022, Fall 2022, Spring 2023, Fall 2023, Spring 2024, Fall 2024)
- 3. BCB 5300: Algorithms in Computational Biology (Fall 2021, Fall 2022, Fall 2023, Fall 2024)
- 4. CSCI 5980: Graduate Reading Course (Spring 2022, Summer 2023)
- 5. CSCI 5970: Research Topics (Summer 2021, Spring 2022, Summer 2022, Fall 2022, Spring 2023)
- 6. CSCI 5990: Thesis Research (Spring 2021, Fall 2022, Spring 2023)

Courses Co-Taught (1)

1. BCB 5810: Bioinformatics Colloquium (Fall 2020)

Advising

Statistics of Advising Impact

- Advising 3 master's students and 1 undergraduate student as supervisor in research projects at SLU
- Advised 2 graduate students as chairperson of master's written thesis
- Advised 9 master's students as supervisor in research projects at SLU
- Co-supervised 4 PhD students and 3 master's students at SLU
- Co-advised 6 master's students in University of Washington-Bothell
- Advised 3 undergraduate students, 3 high school students
- Mentored 33 CS undergraduates and BCB graduate students in course selection

Current Lab Members

- Ibrahim Khan; BS Biology (09/2024 Present) Project: RNA 3D structural analysis
- Ramez Mosad; BS Computer Science and Mathematics (09/2024 Present) Project: RNA structural motif analysis

- Matt Mueller; MS-BCB SLU (09/2024 Present) Project: Development of AI-driven RNA motif data analysis framework
- Shrugna Varma Subburi; MS-BCB SLU (09/2024 Present)
 Project: Identification of Protein Epitope Structure using Machine Learning Method
- Vinay Chaudhari; MS-AI SLU (09/2023 Present) Project: Development of AI-driven RNA motif data analysis framework

Prior SLU Graduate Students Advising as Thesis Chair

- Omar AI Akkad; MS-AI SLU (01/2022 05/2023)
 <u>Master thesis</u>: Evaluation of Privacy Inference Attack on Deep Recurrent Neural Network <u>Current</u>: PhD program of GIS at Saint Louis University
- 2. Rahul Chauhan; MS-CS SLU (09/2019-05/2021)
 <u>Master thesis</u>: A deep learning approach to estimate protein model quality using structural constraints from multiple sequence alignments.
 <u>Publication</u>: [Rahbar et al. (2022)]
 <u>Current</u>: Software Development Engineer II at GoDaddy

Prior SLU Graduate Students Advising as Project Supervisor

- Prerna Ashok Bachwani; MS-BCB SLU (09/2023 05/2024);
 <u>Project</u>: RNA interaction analysis <u>Current</u>: Full-time Research Technician II at Washington University at St. Louis starting July, 2024
- Charlz Nithin Jerold; MS-BCB SLU (09/2022 05/2024);
 <u>Project</u>: Identification of Protein Epitope Structure <u>Current</u>: Full-time Bioinformatics Research Analyst at Washington University at St. Louis starting <u>June</u>, 2024
- Nexhi Sula (Female), MS-AI SLU (01/2023 Present)
 Project: Algorithms for Machine Unlearning
 Publication: 1 in-preparation conference (will be submitted to USENIX-Security in Fall 2024)
 Current: Join PhD program of Computer Science at SLU in Fall 2024
- 4. Mahdi Rahbar; MS-AI SLU (09/2021 05/2023)
 <u>Project</u>: Language models for protein/RNA structure analysis Publication: [Rahbar et al. (2022)]
- 5. Chandana Enugala (Female), MS-AI SLU (06/2022 07/2023) Project: Algorithms for Machine Unlearning
- Varun Julakanti; MS-CS SLU (Spring 2023) Project: Model Inversion Attack using Stable diffusion
- 7. Pankil Shah; MS-CS SLU (01/2021-05/2022) Project: Web database for protein toxin analysis
- Yu Zhang (Female), MS-BCB SLU (01/2021-05/2022) <u>Project</u>: Protein-RNA interaction prediction Current: full-time Bioinformatician at Washington University at St. Louis
- Aasritha Nallapu (Female), MS-BCB SLU (Spring 2022)
 <u>Project</u>: Generate and analyze de novo protein structure predictions in C. neoformans Current: full-time Bioinformatician at Washington University at St. Louis

Graduate Student Advising as Thesis / Projects / Dissertation Co-supervisor (including co-supervision of 4 PhD students and 3 graduate students at SLU and 6 MS students in total at University of Washington - Bothell)

- 1. Jinhui Li; PhD student in the Department of Biology at SLU. (10/2023 Present).
- Md. Sharear Saon; PhD student in the Department of Chemistry at SLU. PhD research co-advisor (09/2021 - 05/2023).
 <u>Project</u>: Structure and Stability of RNA Pentaloops and Improved Tools to Predict RNA Secondary and Tertiary Structures

Publication: [Saon et al. (2024)] Current position: Postdoctoral Scholar, Pennsylvania State University

- Tong Si (Female); PhD student in the Department of Mathematics at SLU. PhD research co-advisor (09/2022 08/2024).
 <u>Project</u>: Missing value imputation and change-point detection in high-dimensional data <u>Current position</u>: Assistant Professor of Mathematics at Culver-Stockton College Publication: [Si et al. (2023)]
- 4. Noor Al-Hammadi (Female); PhD student in the Department of Health & Clinical Outcomes Research at SLU. PhD research co-advisor (10/2020 08/2022). Project: Pharmacogenetic and Clinical Refinement of the Warfarin Dose Using Penalized Linear Regression and Machine Learning Current position: Assistant Professor in Department of Health & Clinical Outcomes Research at Saint Louis University
- Saurav Jayakumar; Graduate student in the Department of Computer Science at University of Washington Bothell. *Committee Chair: Dong Si, Ph.D (Jul 2023 Aug 2024)*.
 <u>Project:</u> GraphConv: Geometric Deep Learning for Multiple Conformation Generation from Electron Density Images
- 6. Esha Rajesh Gavali; Graduate student in the Department of Computer Science at University of Washington Bothell. *Committee Chair: Dong Si, Ph.D (Feb 2023 Aug 2024)*.
 <u>Project:</u> Enhancing the Performance of GNN and Utilizing 3D Instance Segmentation for Ligand Binding Site Prediction
- Abhinav Kumar; Graduate student in the Department of Computer Science at Saint Louis University. *Committee Chair: Reza Tourani, Ph.D (Sep 2023 - Jul 2024).* Project: Towards Attack-Agnostic Validation of Machine Learning as a Service
- Nexhi Sula; Graduate student in the Department of Computer Science at Saint Louis University. *Committee Chair: Reza Tourani, Ph.D (Jan 2023 May 2024).* Project: Leveraging Attack Algorithms for Approximate Unlearning in Machine Learning: A New Paradigm for Privacy Enhancement
- Matt Dreyer; Graduate student in the Department of Engineering, Aerospace/Mechanical Engineer at Saint Louis University. *Committee Chair: Srikanth Gururajan, Ph.D (Sep 2022 - Jun 2023).* Project: Determination of the Location, Size, and Geometry of a Multi-Rotor UA Vfrom Two Video Streams
- Chloe Ma; Graduate student in the Department of Computer Science at University of Washington. *Committee Chair: Dong Si, Ph.D (May 2023 - May 2024).* <u>Project: Beyond Current Boundaries: Integrating Deep Learning and AlphaFold for Enhanced Protein</u> <u>Structure Prediction from Low-Resolution Cryo-EM Maps</u>
- 11. Jason Chen; Graduate student in the Department of Computer Science at University of Washington. *Committee Chair: Dong Si, Ph.D (Feb 2021 - Dec 2023).*

<u>Project</u>: Protein Structure Refinement via DeepTracer and AlphaFold2 Publication: [Chen et al. (2024)]

- Andrew Hitoshi Nakamura; Graduate student in the Department of Computer Science at University of Washington. *Committee Chair: Dong Si, Ph.D (Jul 2021 - Aug 2022).* Project: Macromolecular Modeling: Integrating DNA/RNA into DeepTracer's Prediction Pipeline Publication: [Nakamura et al. (2023)]
- Nathan Ranno; Graduate student in the Department of Computer Science at University of Washington. *Committee Chair: Dong Si, Ph.D (Feb 2020 - Jun 2021).* Project: Enabling Deep Geometric Learning on Cryo-EM Maps Using Neural Representation

Prior SLU Undergraduate Students Advising as Project Supervisor

- Bhanu Pujari; BS Neuroscience SLU (09/2021 05/2024)
 <u>Project</u>: Protein data analysis
 <u>Current position</u>: Graduate student in SLU Medical School (SOM) starting Fall 2024
- Daniel Mao; BS Computer Science (01/2022 05/2023)
 Project: Improving membership inference attack using feature selection and model ensemble technique
 Current position: Software Developer at Saint Louis University
- Ciri Chandana Pocha (Female); BS Neuroscience SLU (09/2020 08/2021); <u>Project</u>: Protein quality analysis, RNA data processing; <u>Publication</u>: 1 published journal [Hippe et al. (2022)]

High School Intern / Student Advising (3 students)

- 05/2023 12/2023, Ian Hou; The John Cooper School, One John Cooper Drive, Woodlands, Texas, United States.
 <u>Project</u>: RNA secondary structure analysis using graph neural network <u>Publication</u>: [Saon et al. (2024)]
- 2. 10/2023 Present, Grace Fu; Parkway south high school, Manchester, Missouri, United States. Project: Warfarin dosing prediction using recurrent neural network
- 3. 06/2022-08/2022, Gabriel Schwarz; Highland High School, Missouri, United States. Project: Develop computational framework for protein quality analysis

Academic mentor (33 students in total)

• Provide active mentorship to 33 CS undergraduates and BCB graduate students since 2019

IV. Services

Statistics of Main Internal and External Services

- Served on the degree committee of 17 graduate students
- Served on +8 various committees of department, college, and university
- Collaborating/Consulting +10 research groups on bioinformatics, machine learning, artificial intelligence research at SLU
- Served as US Department of Energy (DOE) panelist and grant application reviewer 1 time
- Associate Editor of Protein Bioinformatics (specialty section of Frontiers in Bioinformatics)

- Served as handling editor for journals such as Protein Bioinformatics, and IEEE/ACM Transactions on Computational Biology and Bioinformatics
- Memberhsip with AAAS and ACM
- Reviewed papers for 18 journals
- Co-chaired BioKDD workshop in KDD 2023 conference
- Served on program committees of conferences and workshops 2 times

Department Services

Graduate Thesis / Dissertation Committees at SLU (11 students): Jinhui Li (current), Cory Gardner (current), Tong Si (Female, current), Nexhi Sula (Female, SP2024), Wazma Ali (Female, SP2024), Muhammad Aqeel (FL2024), Andrew Beiler (FL2023), Matt Dreyer (SU2023), Mahdi Rahbar (SP2023), Noor Al-Hammadi (Female, SU2022), Princewill Okorie (SP2022)

Graduate Thesis / Capstone Committees at University of Washington-Bothell (6 students): Esha Rajesh Gavali (Female, current), Saurav Jayakumar (current), Chloe Ma (Female, SP2024), Jason Chen (FL2023), Andrew Hitoshi Nakamura (SU2022), Nathan Ranno (SU2021)

Research Collaboration Services in the CS Department: Collaborating with many faculty in the computer science department on various research projects, including published work Kosfeld et al. (2020), Dougherty et al. (2023).

Department Committee Services

- 1. 2024, PhD qualifying exam committee of Cory Gardner, Department of Computer Science, Saint Louis University
- 2. 2024, Serve on the Ad-hoc Bioinformatics and Computational Biology Academic Program Review Committee, Saint Louis University
- 3. 2023 Present, Technology Committee, Department of Computer Science, Saint Louis University
- 4. 2022-2023, Supervisor for Computer Science Capstone projects, Department of Computer Science, Saint Louis University
- 5. 2022 Present, Co-organizer of MS-BCB program orientation, Saint Louis University
- 6. 2022 Present, Department representative in Curriculum Committee of School of Science and Engineering (SSE)
- 7. 2022, Faculty representative in Academic fair, Department of Computer Science, Saint Louis University
- 8. 2021-2022, Committee member in department undergraduate curriculum/affairs committee, Department of Computer Science, Saint Louis University
- 9. 2020-2021, Supervisor for Computer Science Capstone projects, Department of Computer Science, Saint Louis University
- 10. 2020 Present, Serve as an academic advisor to multiple MS-BCB graduate students, Department of Computer Science, Saint Louis University.
- 11. 2020, Co-organizer of weekly BCB colloquium seminar series, Department of Computer Science, Saint Louis University
- 12. 2019 Present, Serve as an academic mentor to multiple CS undergraduate students, Department of Computer Science, Saint Louis University.

- 13. 2019 Present, Provided reference letters for BCB/CS/AI students in support of internships, job openings, and PhD applications, Department of Computer Science, Saint Louis University
- 14. 2019 Present, Participating in almost all Computer Science (CS) faculty meetings

College Services

- Aug 2023 May 2024, *Chair of SSE Curriculum Committee*, School of Science and Engineering (SSE), Saint Louis University
 <u>Responsibilities</u>: Coordinate the process of curriculum review requests, engage in monthly faculty council meetings to deliberate on the course proposals, documentation of review policy
 <u>Activities</u>: During my tenure as Chair, I oversaw around 130 proposals for course changes and new courses/programs.
- 2. Aug 2022 May 2023: *Department representative to SSE Curriculum Committee* Responsibilities: Review course/program change proposals
- 3. Aug 2022 Present, Participating in monthly SSE faculty council meetings and activities, School of Science and Engineering (SSE), Saint Louis University

University Services

Affiliation Services

Affiliated with *SLU Master of Bioinformatics and Computational Biology (BCB) program* (since 2019), *SLU AHEAD Institute* (since 2024). Participating in meetings, symposiums and external / internal seminars organized by these two organizations.

Research Collaboration and Consulting Services at Saint Louis University (+5 groups / PIs)

- 1. Collaboration with Dr. Longping Victor Tse in Department of Molecular Microbiology & Immunology to develop computational methods for identification of protein epitope structure
- 2. Collaboration with Dr. Brent Znosko in Department of Chemistry to develop computational framework for RNA motif analysis
- 3. Collaboration with Dr. Dapeng Zhang in Department of Biology to develop bioinformatics methods for Genome-wide discovery and analysis of bacterial toxin systems
- 4. Collaboration with Dr. Haijun Gong in Department of Mathematics to develop deep learning algorithms for scRNA-seq data analysis.
- 5. Collaboration with Dr. Noor Al-Hammadi in Department of Health & Clinical Outcomes Research to develop machine learning algorithms for warfarin dosing prediction.
- 6. Collaboration with Drs. Chihou Lei (Aerospace and Mechanical Engineering), Yan Gai (Biomedical Engineering), Benjamin Hutz (Mathematics) on a variety of research topics and grant writing.

Other University Services

- 1. 2024, Served as a PhD committee member for Jinhui Li who is a PhD student in the Department of Biology, Saint Louis University
- 2. 2023 2024, Served as a PhD committee member for Tong Si who is a PhD student in the Department of Mathematics, Saint Louis University
- 3. 2021 2023, Served as a PhD committee member for Md. Sharear Saon who is a PhD student in the Department of Chemistry, Saint Louis University
- 4. 2022, Moderator in SLU Sigma Xi Symposium, Saint Louis University
- 5. 2022, Judge in SLU GSA Research Symposium, Saint Louis University

- 6. 2020 2022, Serve as a PhD committee member for Noor Al-Hammadi who is a PhD student in the Department of Health Outcomes Research
- 7. 2020, Served as a PhD committee member for Sourav Bhadra who is a PhD student in the Department of Environmental Science and GIS

Regional, National and International Services

Membership

AAAS (since 2020), ACM (since 2019)

Journal Paper Reviewing (18 International Journals)

Nature Computational Science, Computers in Biology and Medicine, Journal of Biotechnology, IEEE Transactions on Pattern Analysis and Machine Intelligence, Frontiers in Bioinformatics, Briefings in Bioinformatics, Bioinformatics, BMC Supplements, Computational and Structural Biotechnology, Nature Scientific Report, Plos One, Chinese Journal of Electronics, Journal of Molecular Sciences, Journal of Digital Discovery, Journal of Neural Networks, Journal of Entropy, Journal of Applied Sciences, Database: the Journal of Biological Databases and Curation.

Workshop co-chair, Committee Member, Editorial Board, Grant Review, and Other Services

- 2024, Program Committee, IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
- 2023-2024, Co-editor, IEEE/ACM Transactions on Computational Biology and Bioinformatics
- 2023, Handling editor, Protein Bioinformatics
- 2023, Workshop co-chair: The 22nd International Workshop on Data Mining in Bioinformatics (BIOKDD), Long Beach, CA, USA, Aug. 2023.
- 2023, Panel Reviewer: US Department of Energy (DOE) Biological & Environmental Research (BER).
- 2022, Associate Editor: Journal of Frontiers in Bioinformatics.
- 2022, Judge in DataFest competition at Pacific Lutheran University