Initial mutations as low-entropy features in neural language modeling

Kevin Scannell
Ollscoil Saint Louis / Acadamh na hOllscolaíochta Gaeilge
6 Feabhra 2020
“Praistriúchán”

Irish portmanteau word:
“praiseach” = “a mess, a botch job”, “aistriúchán” = “translation”
ghlèidh an bùth na cèicean a bh’aca
choinnigh an siopa na gcácaí a bhí acu
Language modeling

- A language model (LM) is a probability distribution over sequences of words.
- If $S = \text{“colorless green ideas...”}$, a language model assigns this a prob $P(S)$:
 \[
P(S) = P(\text{colorless}|^) \cdot P(\text{green}|\text{colorless}) \cdot P(\text{ideas}|\text{colorless green}) \cdots
 \]
- Usually formulated and computed this way (word prob given history).
- LMs capture a lot! Pragmatics, syntax, real-world knowledge, ...
- $P(\text{Carolina}|\text{We spent spring break in South}) > P(\text{Dakota}|\text{We spent spring break in South})$
- $P(\text{is}|\text{The dog that chased the cat that chased the mice}) > P(\text{are}|\text{The dog that chased the cat that chased the mice})$
Applications

- Almost all important language technologies use LMs at some level!
- Can be used generatively
- MT, ASR, etc. fundamentally generate text, conditioned on input
- Conversational agents (Turing test)
- Strong LM alone can do question answering, summarization, ...
- Better language models give better end-to-end performance, generally
Neural language models

- A flood of recent papers on neural language modeling, big leaps forward
- Originally, feed-forward neural networks (Bengio et al, 2003)
- Various refinements + regularization of recurrent networks (LSTMs, etc.)
- Most recently the Transformer architecture (Vaswani et al, 2017)
- My current research involves applying these developments to Irish
- Want to discuss one small linguistically interesting piece of this today...
Research on English != Research on Language

- Sites tracking SOTA for language modeling show English datasets only
- Research almost 100% (and implicitly!) focused on English
- The word “English” isn’t used even once in these groundbreaking papers:
 - Google Brain’s landmark 2016 paper “Exploring the limits of language modeling”
 - Melis et al’s “On the state of the art of evaluation in neural language models” (2017)
- New architectures are likely to only benefit languages with massive corpora
- Also are unlikely to work well for morphologically complex languages
Celtic initial mutations

- Celtic languages have initial mutations usually triggered by context
- *bád seoil* “sailboat”, *mo bhád seoil* “my sailboat”, *ár mbád seoil* “our sailboat"
- Gender: *fear* “man”, *an fear bocht* “the poor man”, but:
- *bean* “woman”, *an bhean bhocht* “the poor woman”
- Dative case: *ar an mbád seoil* “on the sailboat” (or, *ar an bhád seoil*)
- Genitive plural: *leithreas na bhfear*
 - toilet DET.GEN.PL men.GEN.PL
 - “the men’s toilet”
- We consider five mutations: *none, lenition, eclipsis, t-prothesis, h-prothesis*
Motivating examples

● This was (one of) Google’s mistakes in the earlier image:

 *tríd an bóthar → tríd an mbóthar
 through the road

● And Intergaelic too, tricked by VSO:

 *choinnigh an siopa na gcácaí a bhí acu
 kept the shop the cakes that were at-them
 “the shop kept their cakes”
 (cf. siopa na gcácaí “the shop of the cakes”, “the cake shop”)
Mutations as low-entropy features

- Celtic mutations carry very little information
- Usually determined by the previous two words and initial letter of target word
- Could remove them and one can almost always replace them unambiguously:

Deirtear go iompraíodh sí gunnaí ina carr, iad faoi ceilt i mála plúir.

Ní raibh Gaoth Dobhair ann mar ainm dúiche ná paróiste ar tús, ach mar ainm ar an gaoth / abhainn ónar baisteadh an ceantar, an cainéal nó an inbhear farraige idir an paróiste agus na Rosa, ar a tugtar an Gaoth go dtí an lá inniú, agus an abhainn.
Mutations as low-entropy features

- Celtic mutations carry very little information
- Usually determined by the previous two words and initial letter of target word
- Could remove them and one can almost always replace them unambiguously:

Deirtear go n-iompraíodh sí gunnaí ina carr, iad faoi cheilt i mála plúir.

Ní raibh Gaoth Dobhair ann mar ainm dúiche ná paróiste ar dtús, ach mar ainm ar an ghaoth / abhainn ónar baisteadh an ceantar, an cainéal nó an t-inbhear farraige idir an pharóiste agus na Rosa, ar a dtugtar an Gaoth go dtí an lá inniu, agus an abhainn.
What is entropy?

- Repeat the above experiment, but now imagine that you have €1.00 to wager on each word.
- For “...iad faoi ceilt”, you might bet €0.99 on lenition, and €0.0025 each on the other four possibilities.
- For “idir an paróiste”, you might bet €0.75 on no mutation, €0.24 on lenition, and €0.003333 on the other three.
- Whatever the correct mutation is, you lose an amount equal to $-\log_2$ of your bet (see graph).
- The entropy is your average loss per bet; it measures how hard it is to predict mutations. Our claim is that we can make near-optimal bets to make this loss very small!
A formula for entropy of mutations

- “Average number of bits per word carried by mutations”
- Let $\mu(w)$ be the mutation of w, and let $\sigma(w)$ be w with its mutation removed
- Build a neural network model that predicts $P(\text{mutation} \mid \text{word history})$
- Compute the \log_2 loss of this model on a test set

$$\Lambda = -\frac{1}{N} \sum_{i=1}^{N} \log_2 P(\mu(w_i) | \sigma(w_1) \ldots \sigma(w_i))$$
Factored language models

- Word-based LMs don’t see that bad, bhád, mbád are really the same word
- Since “bád” is most common, harder to predict collocations like “bhád seoil”
- View each word w as a bundle of features
- Factor P(w) as a product of feature probabilities conditioned on earlier features
- In our case this is simple! Features are the demutated word and the mutation
e.g., P(bhád | ... mo) = P(bád | ... mo) P(lenition | ... mo bád)
\[(P(L), P(T), P(H), P(E), P(N))\]

softmax

dense, \(N=100\)

LSTM, \(N=200\)

\[
\sigma(w_{k-2}) = ar \quad \sigma(w_{k-1}) = an \quad \sigma(w_k) = b\acute{a}d
\]
Results

- 2.32193 \((\log_2 5)\) bits/word for random labels
- 0.75917 bits/word using label prior probabilities
- 0.40571 bits/word using unigram model (label distribution per word)
- 0.10710 bits/word using trigram model
- **0.06949** bits/word: NN trained on 50M words, 100k vocabulary, 15 epochs
- More than \(\frac{1}{3}\) of the loss comes from human errors in test corpus!
Applications

- Improved LM for Irish when used in a factored model on demutated words
- Data-driven grammar checking which robustly handles variant spellings, etc.
- Data-driven estimate of information-theoretic content of mutation system
- Large (quantifiable) divergence between official standard(s) and actual usage
Which mutations carry information?

- Of 10000 examples, correct label was assigned P<0.5 167 times, 98.3% correct
- These 167 examples contribute 77% of the total loss!
- 61 of 167 are grammatical errors in the test file
- 30 were assigned low prob only because of lack of context to the right
- 23 were correct but non-standard forms (dhom, e.g.)
- 16 relate to some form of the third person possessive (a, ina, faoina, ...)
- 9 are dialect differences: lenition vs. eclipsis in the dative
- Various assorted others
- (Note the many cases not here, e.g. indirect vs. direct relativizer, etc.)
Digression: orthographic transparency

- This approach only works for Irish and Scottish Gaelic
- Four of the five mutations in Irish can be trivially and algorithmically removed
- h-prothesis cannot, in general: *(hamhlaidh vs. hidrigin)*
- Even with a dictionary, some ambiguity: *aiste* “essay” vs. *haiste* “hatch”
- I strip all h’s and let the neural networks figure it out!
- Scottish Gaelic is transparent in all cases (they write h-)
- Welsh, Cornish, Breton, and Manx Gaelic are not at all transparent!
Gender bias in training

- tá sé/sí ina múinteoir/múinteoir
 is he/she in-his/her teacher
 “he/she is a teacher”
- Discard words with gender baked-in: máistir/máistreás, siúr/bráthair, etc.
- Of remaining 446 occupations, male mutation is more common for 434 (sic!)
- Exceptions: altra, aoi-léachtóir, comhláithreoir, comhordaitheoir, comhstiúrthóir, cuiditheoir, damhsóir, fidléir, gnáthurlabhra, mainicín, striapach, tréidlia
- Strongest male bias: ardcheannasaí, coirnéal, ginearál, giúistís, iascaire, marcach, misinéir, óglach, peileadóir, píobaire, printíseach, seanchaí, tosaí
Gender bias in mutation prediction

<table>
<thead>
<tr>
<th>Actual Mutation</th>
<th>Predicted Mutation</th>
<th>Masculine</th>
<th>Feminine</th>
<th>Plural</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masculine</td>
<td>189</td>
<td>7</td>
<td>2</td>
<td>0.9594</td>
<td>0.9545</td>
<td>0.9570</td>
<td></td>
</tr>
<tr>
<td>Feminine</td>
<td>8</td>
<td>29</td>
<td>2</td>
<td>0.8056</td>
<td>0.7436</td>
<td>0.7733</td>
<td></td>
</tr>
</tbody>
</table>
Thank you! / Go raibh maith agaibh!

- https://cs.slu.edu/~scannell/
- https://cadhan.com/
- http://crubadan.org/
- http://indigenoustweets.com/
- http://chuala.me/
- http://intergaelic.com/
- http://corpas.ria.ie/
- https://github.com/kscanne/